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Abstract—Blind image quality assessment (BIQA) that can
directly evaluate image quality without perfect-quality reference
has been a long-standing research topic. Although the existing
BIQA models have achieved very encouraging performance, the
lack of explainability and generalization ability limits their real-
world applications to a great extent. People usually assess image
quality according to semantic attributes, e.g., brightness, color,
contrast, noise and sharpness. Furthermore, judgment on image
quality is also impacted by the scene presented in the image.
Therefore, the inherent relationship between semantic attributes
and scenes is crucial for image quality assessment, which has
rarely been explored yet. With this motivation, this paper
presents a Semantic Attribute Reasoning based image QUality
Evaluator (SARQUE). Specifically, we propose a two-stream
network to predict semantic attributes and scene categories from
distorted images. To investigate the inherent relationship between
the semantic attributes and scene category, a semantic reasoning
module is further proposed based on the graph convolution
network (GCN), producing the final quality score. Extensive ex-
periments conducted on five in-the-wild image quality databases
demonstrate the superiority of the proposed SARQUE model over
the state-of-the-arts. Furthermore, the proposed model features
better explainability and generalization ability due to the use of
semantic attributes.

Index Terms—Blind image quality assessment, explainability,
generalization ability, semantic attribute, graph convolution net-
work

I. INTRODUCTION

W ITH the emerging popularity of smartphones and mo-
bile internet, massive amounts of images are recorded

and shared in people’s daily life. In practice, images are easily
contaminated by diversified distortions during their acquisi-
tion, compression, storage and transmission, which in turn
cause quality degradation and impair human visual experience
[1]–[4]. Objective image quality assessment (IQA), which
quantifies image quality in a perceptual manner, has wide
applications in image compression [5], image restoration [6],
image retrieval [7], and imaging system optimization [8]–
[10], etc. The current IQA models can be classified into
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three categories depending on the availability of perfect-
quality reference images, including full-reference IQA (FR-
IQA), reduced-reference IQA (RR-IQA), and no-reference or
blind IQA (BIQA) [11]. Among them, BIQA models operate
on distorted images directly without using any reference
information, which has been the research focus recently.

Typically, a BIQA model consists of a feature extraction
stage and a pooling stage [12], [13]. Early efforts mainly
leverage hand-crafted features to measure the distortions, such
as the mean subtracted contrast normalized (MSCN) coeffi-
cients [14], image gradient [15], and Wavelet-based features
[16]. Recent works have turned to learn deep features due
to the powerful representation ability of deep convolutional
neural networks (CNN) [17]. During pooling, regressors, such
as Support Vector Regression (SVR) [18], random forest (RF)
[19], back propagation neural network (BPNN) [20], and fully
connected layers (FC) [4], have been widely used to map the
extracted features to an overall image quality score.

Following the above pipeline, a large number of BIQA
models have been proposed in the past decade [3]. However,
most of them are designed for synthetic distortions. BIQA
models for authentic distortions remain extremely challenging.
The underlying reasons are two-fold. (1) Distortion diversity.
Different from the synthetic distortions that are usually gen-
erated in a lab-controlled environment, authentic distortions
are much more diversified [21]. As shown in Fig. 1, synthetic
distortions are usually present in the whole image homoge-
neously. In contrast, in-the-wild images typically suffer from
a mixture of distortions, which are much more complicated
to model [22]. As a result, BIQA models trained on synthetic
distortions cannot easily generalize to authentic distortions.
(2) Content variation. BIQA models are expected to have the
capability of evaluating images with ever-changing content in
real-world environment. However, the existing image quality
databases, which are used to train BIQA models, typically
consist of very limited content categories. For example, the
widely used databases LIVE [23], TID2013 [24] and CSIQ
[25] only contain no more than 30 content categories. Even the
latest KonIQ-10K [26] and SPAQ [27] databases are only made
up of about 10,000 images, which are still not representative of
the complete image space. Therefore, BIQA models trained on
the de facto image quality databases are still weak in handling
real-world images.

In recent years, deep neural networks have demonstrated
their effectiveness on BIQA [28]. Due to the lack of big
training data, ImageNet [29] pre-trained model is commonly
adopted to extract quality-aware features, based on which the
quality score is predicted. However, image quality assessment
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(d) Fast fading(a) Gaussian blur (b) JPEG2000 (c) White noise

(e) Low illumination (f) Defocused blur (g) Motion blur (h) Over exposure

Fig. 1. An example to show the difference between synthetic distortions and authentic distortions. Images (a)-(d) are degraded by synthetic distortions and
images (e)-(h) are degraded by authentic distortions.

is essentially different from image recognition [4]. To be
specific, BIQA models need to be sensitive to distortions,
while the image recognition task is expected to be invariant
to distortions. From this perspective, quality assessment and
image recognition have distinct requirements for the feature
representations. Although these pre-trained CNN models can
mitigate the over-fitting problem to some extent, the gener-
alization ability is quite limited. On the other hand, people
tend to judge image quality according to specific semantic
attributes, such as brightness, color, contrast, noise and sharp-
ness. However, the existing BIQA models can only predict a
single scalar score, which also impedes their applications in
real-world scenarios. Therefore, how to design an explainable
BIQA model is also of increasing concern.

Motivated by the above facts, this paper presents a Se-
mantic Attribute Reasoning based image QUality Evaluator
(SARQUE), which is characterized by good explainability
and generalization ability. Specifically, a two-stream network
with multiple branches is designed to learn semantic attributes
and scene categories from distorted images, which are high-
ly related to image quality. Then, we propose a semantic
reasoning module based on the graph convolution network
(GCN) [30] to mine the inherent relationship between semantic
attributes and scene category, producing the final quality score.
Extensive experimental results demonstrate that the proposed
SARQUE model can not only accurately evaluate the quality
of in-the-wild images, but also predict the semantic attributes
simultaneously to facilitate model explainability. Further, with
the help of semantic attributes, the proposed model also
achieves better generalization ability. The contributions of this
work can be summarized as follows.
• We propose a new BIQA model for in-the-wild images

via semantic attribute reasoning, which not only delivers state-
of-the-art performance, but also achieves good generalization
ability. Unlike existing BIQA models that only predict a single
quality score, the proposed model can also predict the quality-
aware semantic attributes, which in turn facilitate better model
explainability.

• We propose a GCN-based semantic reasoning module
to investigate the interactions between semantic attributes
and scene category in determining the overall image quality.
Compared with the commonly used FC pooling, GCN-based
attribute reasoning can predict image quality more compre-
hensively and better performance is achieved.
• We conduct extensive experiments and comparisons on

five in-the-wild image quality databases, and the experimental
results demonstrate the superiority of the proposed model
over the state-of-the-art BIQA models. Visual results are also
provided to demonstrate the explainability of the proposed
model.

The rest of the paper is organized as follows. We review
the related works in Section II. The details of the proposed
SARQUE model are introduced in Section III. Experimental
results and visual analysis are given in Section IV. Finally,
conclusions are drawn in Section V.

II. RELATED WORKS

A. Hand-crafted Feature-based BIQA

Early works for BIQA mainly utilized hand-crafted features
to measure image distortion, which can be further divid-
ed into two categories, i.e., distortion-specific metrics and
general-purpose metrics. Distortion-specific metrics measure
the degree of a known distortion type, such as Gaussian
blur and noise [16]. Although this kind of metrics have
achieved significant success, their application scope is rather
limited, because the exact distortion types are usually unknown
in real applications. To overcome this limitation, general-
purpose BIQA metrics have been proposed. Representative
general-purpose BIQA metrics include the Blind/Referenceless
Image Spatial QUality Evaluator (BRISQUE) [14], BLind
Image Integrity Notator using discrete cosine transform (D-
CT) Statistics-II (BLIINDS-II) [31], Natural Image Quality
Evaluator (NIQE) [32], Integrated Local NIQE (IL-NIQE)
[33], Codebook Representation for No-Reference Image As-
sessment (CORNIA) [34], and BIQA method based on high
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Fig. 2. The overall structure of the proposed Semantic Attribute Reasoning based image QUality Evaluator (SARQUE). Semantic Attribute Learning module
learns the distribution of five semantic attributes from distorted images. Scene Category Prediction module predicts the probability of scene category. Semantic
Reasoning module mines the inherent relationship between the semantic attributes and scene category. Res: block of ResNet-50; FC: fully connected layer;
NF: node feature.

order statistics aggregation (HOSA) [35], just to name a few.
Quality-aware features are usually extracted based on Natural
Scene Statistics (NSS) or visual codebooks. This kind of
features are designed based on the intuitive understanding of
the distortion characteristics, so they have explicit physical
meanings. However, hand-crafted features are usually not
comprehensive in representing the challenging distortions of
in-the-wild images.

B. Deep Learning-based BIQA

With the boom of deep learning, convolutional neural net-
works have become the de facto configuration in building
modern BIQA models. To alleviate the conflict between the
small number of training samples and the large number of
learnable model parameters, early attempts mainly employed
relatively shallow networks for extracting quality-aware fea-
tures. For example, Kang et al. [36] utilized a shallow CNN
model to perform quality prediction, which consists of a
convolutional layer, two fully connected layers and an output
node. In [37], Hou et al. first utilized a discriminative deep
model to classify an image to five quality grades. Then, a
quality pooling strategy was used to produce the final quality
score. Recently, deeper networks were utilized to handle more
complex distortions. In [38], Ma et al. proposed a novel multi-
task learning framework for BIQA by learning distortion iden-
tification and quality prediction simultaneously. In [26], Vlad
et al. built a large-scale in-the-wild IQA database and proposed
a deep learning model to measure the authentic distortions.
Zhang et al. [39] used a two-stream network to learn synthetic
distortions and authentic distortions simultaneously. Then, the
bi-linear pooling was adopted to predict the quality score.

In [27], Fang et al. introduced a new authentically distorted
IQA database with rich annotations and proposed a BIQA
model based on multi-task learning. Liu et al. [40] utilized
synthetically generated distortions to build a large number
of image pairs, based on which a prior model was trained.
Then, a target BIQA model can be easily obtained after fine
tuning using a small amount of images. In [41], Ma et al.
built an opinion-unaware BIQA model using the learning-to-
rank strategy with collected large scale quality-discriminable
image pairs. In [42], Zhu et al. leveraged meta-learning to
train a general-purpose BIQA model and achieved impressive
performance on both synthetic and authentic distortions.

BIQA has achieved very impressive advances, especially
the deep learning-based models. However, the current BIQA
models can only predict a simple scalar score. The underlying
reasons why the quality score is obtained are unknown.
Further, the fundamental challenges of distortion diversity and
content variation lead to the generalization problem, which
cannot meet the requirement of real-world applications. In this
paper, we make attempts to handle the above challenges by
proposing a new BIQA model via semantic attribute reasoning,
which features better explainability and generalization ability.

III. PROPOSED METHOD

Fig. 2 illustrates the framework of the proposed BIQA mod-
el based on semantic attribute reasoning. The whole framework
consists of three modules, namely semantic attribute learning,
scene category prediction and semantic reasoning. A two-
stream network is adopted to learn semantic attributes and
scene category features, which are both closely related to
image quality. The semantic reasoning module is built based
on the GCN, which is designed to investigate the inherent
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relationship between semantic attributes and scene category
for predicting the overall image quality score.

A. Analysis of Semantic Attributes and Scene Category

People typically assess image quality according to semantic
attributes, e.g., brightness, color, contrast, noise and sharpness.
Fig. 3 shows two examples of high-quality and low-quality im-
ages as well as the corresponding mean opinion score (MOS)
values and semantic attributes. The high-quality image has
good brightness, vivid color and high sharpness. In contrast,
the low-quality image has poor brightness, dull color and low
sharpness. Therefore, semantic attributes strongly correlate
with image quality, which can describe the quality of an
image intuitively. Furthermore, the scene category presented
in an image impact people’s judgment on image quality. For
example, we tend to regard an image of a clear blue sky
as having high quality, while for quality prediction models,
it is most likely to be regarded as blur-contaminated due to
the large homogeneous area [1]. This is mainly because that
human can differentiate the scene categories when judging
image quality [43]. However, content variation is still an open
challenge in BIQA.

Both semantic attributes and scene categories are crucial
for IQA, and they are related to each other. Therefore, there
is a strong correlation between semantic attributes and scene
categories, which interact to produce the overall quality score.
Inspired by the above facts, we first propose a two-stream
network to learn semantic attributes and scene category, re-
spectively. Then, we design a semantic reasoning model based
on GCN to mine the inherent connections between the two
components for predicting the final quality score.

B. Semantic Attribute Learning

Attribute learning, which enables semantic expression of
features in deep models, is frequently used in computer vision
[44]. For example, in [45], the authors found that visual
attributes benefit the learning of effective image representa-
tions, achieving superior performance on object recognition
task. In [46], the authors adopted attribute learning in zero-
shot classification and achieved higher classification accuracy.
As aforementioned, the semantic attributes are highly related
to image quality, such as brightness, colorfulness, contrast,
noisiness and sharpness. In this part, we use a multi-branch
CNN model to learn the quality-aware semantic attributes,
which is shown in Fig. 2. Specifically, we implement the
network of semantic attribute learning using the five blocks
(denoted as Res1 - Res5) of the ResNet-50 backbone [17],
where Res1 - Res5 represent conv1, conv2 x, conv3 x, con-
v4 x and conv5 x, respectively. In this work, the first four
blocks (Res1 - Res4) are used as the shared feature extraction
module. For an input image x, the hidden features da are
obtained from the shared feature extraction module Fθa as:

da = Fθa(x), (1)

where θa denotes the parameter set of the shared feature
extraction module Fθa .

(a) (b)

(c)

(a)

(b)

Sharpness

NoisinessContrast

Colorfulness

Brightness

Fig. 3. Examples of high-quality and low-quality images as well as the
corresponding semantic attributes. (a) high-quality image (MOS=4.49); (b)
low-quality image (MOS=2.21); (c) attribute distribution map of (a) and (b).

Then, we add another four residual blocks that are exactly
the same as the residual block Res5, and the five parallel
residual blocks are used to predict the five semantic attributes
respectively. Following each of the five branches, we add three
FC layers with PReLU activation function, which contain 256
nodes, 64 nodes and 1 node, respectively. Next, we leverage
the five attribute branches to further map the hidden features
da to the semantic attributes ô, which is defined as:

ô = Fθk(da), (2)

where θk denotes the parameters of each attribute branch Fθk ,
and ô = {ô1, ô2, . . . , ôk} denotes the semantic attributes.

During semantic attribute learning, we assume that D =
{xi, oi, si, qi}

Na
i=1 can provide images and corresponding se-

mantic attribute labels, where oi denotes the labeled semantic
attributes of image xi (i = 1, 2, 3, . . . , Na). Based on the
dataset, l1 loss is leveraged to optimize the parameters θa and
θk, which is defined as:

L1 =
1

Na

Na∑
i=1

| oi − ôi |, (3)

where ôi denote the predicted semantic attributes of image xi,
which is computed by:

ôi = Fθk(Fθa(xi)). (4)

Following the above steps, the semantic attribute learning
module can be built by training on D and can simultaneously
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Fig. 4. Network architecture of the GCN-based semantic reasoning module.

extract the features of the semantic attributes, which in turn
are used as inputs of the subsequent semantic reasoning
module. The semantic attributes obtained here provide intuitive
explanation on how the quality score is predicted.

C. Scene Category Prediction
In [43], the authors have experimentally demonstrated that

building an IQA model without considering image content can
only achieve sub-optimal results. The underlying reason is
that human judgment on image quality is coupled with the
understanding of the visual content presented. However, as
aforementioned, content variation is a fundamental challenge
in IQA [1]. As a result, when using semantic attributes for
building the BIQA model, the scene category of the image
should be considered to achieve comprehensive prediction. To
this end, a scene category prediction module is introduced
in the proposed model as shown in Fig. 2. Specifically, the
five blocks (Res1 - Res5) of another ResNet-50 backbone [17]
is utilized for feature extraction. Then, we append three FC
layers with PReLU activation function to map the input image
x to the probability of the predicted scene categories ŝ, which
can be formulated as:

ŝ = Fθs(x), (5)

where θs denotes the parameters of scene category prediction
module Fθs , ŝ = {ŝ1, ŝ2, . . . , ŝn}, and n is the number of scene
categories.

In this module, we use D = {xi, oi, si, qi}
Na
i=1 to pro-

vide images and corresponding scene category labels, where
si denotes the labeled scene categories of image xi (i =
1, 2, 3, . . . , Na). Then, l1 loss is also adopted to optimize the
parameters θs, which is defined as:

L2 =
1

Na

Na∑
i=1

| si − ŝi |, (6)

where ŝi denotes the predicted scene category of image xi,
which is computed by:

ŝi = Fθs(xi). (7)

In this way, the proposed scene category prediction module
is trained on D, which can not only obtain the scene category
in the image, but also generate the scene features, which will
be also input to the subsequent semantic reasoning module.

D. Semantic Reasoning

The motivation of this work is to perform IQA by mining the
relationship between semantic attributes and scene category.
However, the five sets of semantic attribute feature and one
set of scene category feature have specific meanings, and they
have different connection relationships in the IQA process.
Therefore, these different feature sets belong to non-Euclidean
data, directly using MLP for quality regression may lead to
suboptimal results(as shown in Tables VIII and IX. Consider-
ing that the GCN model can be used to model the relationship
between different nodes, in this part, we design a GCN-based
semantic reasoning module to mine the inherent relationship
between the semantic attributes and scene category for jointly
determining the final image quality score. The framework of
the proposed semantic reasoning module is depicted in Fig. 4.
Inspired by the capability of relationship reasoning of GCN
[47], we introduce a two-layer GCN model to perform the
semantic reasoning. Different from the standard convolutions
that compute on Euclidean structures in an image, the idea of
GCN is to learn a mapping function Fθg (·, ·) on a graph G. For
Fθg (·, ·), the inputs are the feature representations Hl ∈ Rn×d
and the corresponding adjacency matrix M̂ ∈ Rn×n, where n
represents the number of nodes, d denotes the dimensionality
of node features, and the node features will be updated as
Hl+1 ∈ Rn×d′ . Therefore, a GCN layer can be formulated as:

Hl+1 = Fθg (Hl, M̂). (8)

By performing the graph convolutional operation [30],
Fθg (·, ·) can be described as:

Hl+1 = h(D̂
− 1

2 M̂D̂
− 1

2 HlWl), (9)

where Wl ∈ Rd×d′ denotes the layer-specific trainable weight
matrix, and h(·) denotes a non-linear mapping, which is
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Fig. 5. Illustration of the adjacency matrix M̂. Sce.: Scene category;
Bri.: Brightness; Col.: Colorfulness; Con.: Contrast; Sha.: Sharpness; Noi.:
Noisiness.

achieved using ReLU. M̂ is the is the adjacency matrix of
the graph G with added self-connections,

M̂ = M + E, (10)

where M denotes the normalized version of the graph G.
In this work, we build the graph G based on the pre-

defined manner by considering two perspectives, including
1) considering the relationship between semantic attributes
and scene categories, we take scene category feature as the
central node, and the five attribute nodes are all connected to
scene category nodes; 2) considering the relationship between
different semantic attributes, we connect brightness and color,
brightness and contrast, contrast and noise, respectively. Based
on this, the adjacency matrix M̂ can be calculated as shown
in Fig. 5. By this means, the final feature representation H∗

is obtained by updating the two GCN layers:

H∗ = Fθg2

(
Fθg1(Hl, M̂), M̂

)
, (11)

where θg1 and θg2 denote the parameters of first GCN layer
Fθg1 and second GCN layer Fθg2 respectively, and Hl ∈ Rn×d
is composed of the corresponding output features of the first
fully connected layer in the semantic attribute learning module
and the scene category prediction module. Here, we set n = 6
and d = 256. Finally, we convert the feature representation
H∗ into a feature vector x∗, and use a multi-layer perceptron
MLPθm to produce the overall quality score q̂, which is
defined as:

q̂ = g(m)(

L∑
i=0

x∗
iw∗

i ), (12)

where w∗
i represents the trainable weight of MLPθm , g(m)

represents the activation function, and m denotes the number
of linear layers. In this work, the MLP consists of two linear
layers with 8 and 1 nodes respectively. The detailed network
architecture of the GCN-based semantic reasoning module is
shown in Fig. 4.

In this module, we use D = {xi, oi, si, qi}
Na
i=1 to denote

the image quality dataset, where qi denotes the ground truth

Algorithm 1 The proposed SARQUE model.
Input: IQA dataset D, which consists of three subsets includ-

ing semantic attribute subset Dattr = {xi, oi}Na
i=1, scene

category subset Dsce = {xi, si}Na
i=1 and quality score

subset Dqua = {xi, qi}
Na
i=1.

Output: Predicted quality score q̂t, predicted semantic at-
tributes {ô}ki=1 and predicted scene categories {ŝ}ki=1;

1: Initialize all the parameters of the proposed model;
2: // Semantic Attribute Learning ;
3: For iteration = 1, 2, . . . ,do;
4: Sample a batch of k images from Dattr;
5: For j = 1, 2, . . . , N do;
6: Output semantic attributes {ô}ki=1 by using Fθa

and Fθk ;
7: Update parameter θa and θk with L1;
8: end For
9: end For

10: // Scene Category Prediction ;
11: For iteration = 1, 2, . . . ,do;
12: Sample a batch of k images from Dsce;
13: For j = 1, 2, . . . , N do;
14: Output scene categories {ŝ}ki=1 by using Fθs ;
15: Update parameter θs by computing L2;
16: end For
17: end For
18: // Semantic Reasoning ;
19: Building the adjacency matrix M ;
20: For iteration = 1, 2, . . . ,do;
21: Sample a batch of k images from Dqua;
22: For j = 1, 2, . . . , N do;
23: Output quality score {q̂}ki=1 by using Fθg1 , Fθg2

and MLPθm ;
24: Update all parameters with L3;
25: end For
26: end For
27: Input test image xt into the trained SARQUE model;
28: return Predicted quality score q̂t, predicted semantic

attributes {ô}ki=1 and predicted scene categories {ŝ}ki=1;

quality score of image xi (i = 1, 2, 3, . . . , Na). Based on this
dataset, we compute the l1 loss to optimize the parameters of
the whole model, which is defined as:

L3 =
1

Na

Na∑
i=1

| qi − q̂i | . (13)

In this work, L1 and L2 are first employed for optimizing
the semantic attribute learning module and scene category
prediction module on the SPAQ [27] database, respectively.
Then, L3 is used to train the whole model on target databases,
producing the final quality scores. The training process of the
proposed SARQUE model is summarized in Algorithm 1.
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TABLE I
SUMMARY OF IN-THE-WILD IMAGE QUALITY DATABASES WITH RESPECT TO NUMBERS OF IMAGES (# IMAGES), NUMBERS OF CAMERAS (# CAMERAS),

SUBJECTIVE ENVIRONMENT, NUMBERS OF ATTRIBUTES (# ATTRIBUTES), NUMBERS OF SCENE CATEGORIES (# SCENE CATEGORIES), AND SCORE
RANGE, WHERE HIGHER SCORE INDICATES BETTER QUALITY.

Database # Images # Cameras Subjective environment # Attributes # Scene categories Score range

SPAQ [27] 11,125 66 Laboratory 5 9 0-100
KonIQ-10k [26] 10,073 N/A Crowdsourcing 4 N/A 1-5

LIVEW [48] 1,162 15 Crowdsourcing N/A N/A 0-100
RBID [49] 585 1 Laboratory N/A N/A 0-5

CID2013 [50] 480 79 Laboratory 4 N/A 0-100

IV. EXPERIMENTS AND ANALYSIS

A. Databases

To verify the performance of the proposed SARQUE model,
we conduct a series of experiments on five in-the-wild image
quality databases, including SPAQ [27], KonIQ-10k [26],
LIVEW [48], RBID [49] and CID2013 [50].

SPAQ [27]. This database contains a total of 11,125 images
captured by 66 smartphones. These images are degraded by
authentic camera distortions, e.g., out-of-focus blurring, mo-
tion blurring, contrast reduction, and over-exposure, etc. It is
worth mentioning that the SPAQ database has rich annotations.
In addition to the overall MOS, it also provides labels for five
semantic attributes (e.g., brightness, color, contrast, noise and
sharpness) and nine scene categories.

KonIQ-10k [26]. It contains 10,073 authentically distorted
images selected from the YFCC100M [58] database, and each
image has more than 120 ratings. Images in this database have
a wide and uniform distribution of content, brightness and
sharpness. The MOS values collected by crowdsourcing are
utilized as the ground truth.

LIVEW [48]. This database consists of 1,162 images with
authentic distortions. Similar to SPAQ, the distorted images are
captured by mobile devices. The quality score of each image
is collected from 8,500 people by crowdsourcing.

RBID [49]. It has 585 images with authentic blur distortion,
including out-of-focus blur, simple motion blur, and complex
motion blur. The quality of each image is reported in the form
of MOS with the range of [0, 5].

CID2013 [50]. This database consists of 480 images ac-
quired by 79 digital cameras and the corresponding quality
scores. The quality scores range from 0 to 100.

For clarity, detailed information of all the image quality
databases is summarized in Table I.

B. Implementation Details

For all experiments, we first resize images into 244×244×3,
then we randomly crop them to 224×224×3 with a randomly
horizontal flip to augment training images. In the test stage, we
directly resize original images into 224× 224× 3 and predict
the quality scores. In implementation, we first employ the
SPAQ database to pre-train the semantic attribute learning and
scene category prediction modules. Since semantic attribute
learning and scene category prediction belong to different
vision tasks, we train two ResNet-50 networks respectively.
Then, target databases are used to fine-tune the entire network

for the quality assessment. Specifically, the stochastic gradient
descent (SGD) is used as the optimizer, and the initial learning
rate is 0.03 with a warm-up strategy. After pre-training the
semantic attribute learning and scene category prediction mod-
ules, we train the semantic reasoning module for 20 epochs
and then adopt a warm-up strategy to train the whole network.
When the loss does not decline for 20 epochs, the learning rate
drops by a factor of 0.3. When the learning rate is smaller than
1×10−5, we terminate the training process. We utilize Pytorch
to implement the proposed model. The model is trained using
a computer with Intel Core i7-9700K CPU @ 3.60GHz, and
NVIDIA GeForce RTX 3090 24G GPU.

We adopt two widely used criteria for performance evalu-
ation, including Pearson linear correlation coefficient (PLC-
C) and Spearman rank order correlation coefficient (SRCC).
PLCC is used to evaluate the prediction accuracy, and SRCC
is used to evaluate the prediction monotonicity. A better
quality metric should achieve higher PLCC and SRCC values.
To compute PLCC, the following five-parameter nonlinear
mapping is first performed:

f(x) = ξ1

(
0.5− 1

1 + eξ2(x−ξ3)

)
+ ξ4x+ ξ5, (14)

where x donates the prediction score, f(x) denotes the mapped
score, and ξi, i=1, 2, . . . , 5, are the fitting parameters. Then,
PLCC is computed based on the ground truth values and
the corresponding predicted values after the five-parameter
nonlinear mapping, which is defined as:

PLCC =

∑n
i=1(zi − z̄)(pi − p̄)√∑n

i=1(zi − z̄)2
√∑n

i=1(pi − p̄)2
, (15)

where n denotes the number of distorted images in the
database, zi and pi denote the ground truth value and predicted
value of the ith image, and z̄ and p̄ denote the corresponding
average values of all images. SRCC is defined as:

SRCC = 1−
6
∑n
i=1 d

2
i

n(n2 − 1)
, (16)

where di denotes the difference between the ith image’s ranks
in the subjective and objective evaluations.

C. Performance Evaluation

We first compare the performance of the proposed SAR-
QUE model with the relevant state-of-the-arts. Specifical-
ly, six representative hand-crafted feature-based methods are
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TABLE II
PERFORMANCE COMPARISON BETWEEN THE PROPOSED SARQUE MODEL AND THE STATE-OF-THE-ART METHODS ON FIVE IMAGE QUALITY
DATABASES: SPAQ [27], KONIQ-10K [26], LIVEW [48], CID2013 [50], AND RBID [49]. WEIGHTED AVERAGE PLCC/SRCC VALUES ARE

COMPUTED BY CONSIDERING THE NUMBER OF IMAGES IN EACH DATABASE, I.E., BIGGER DATABASES ARE ASSIGNED BIGGER WEIGHTS, AND RESULTS
WITH * ARE OBTAINED FROM PUBLISHED PAPERS.

Metric
SPAQ [27] KonIQ-10k [26] LIVEW [48] CID2013 [50] RBID [49] Weighted Average

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

BLIINDS-II [31] 0.678 0.665 0.615 0.529 0.507 0.463 0.565 0.487 0.495 0.428 0.636 0.587
BRISQUE [14] 0.832 0.822 0.689 0.647 0.645 0.607 0.648 0.615 0.617 0.594 0.752 0.726
IL-NIQE [33] 0.705 0.687 0.537 0.501 0.589 0.594 0.538 0.346 0.435 0.390 0.617 0.588
NFERM [51] 0.832 0.823 0.725 0.689 0.562 0.517 0.825 0.823 0.585 0.559 0.767 0.745
CORNIA [34] 0.867 0.859 0.773 0.738 0.662 0.618 0.680 0.624 0.712 0.695 0.809 0.786

HOSA [35] 0.873 0.866 0.791 0.761 0.678 0.659 0.685 0.663 0.716 0.684 0.820 0.802

deepIQA [52] / / 0.606* 0.604* 0.482* 0.493* / / / / 0.593 0.593
BIECON [53] / / / / 0.613* 0.595* 0.620* 0.606* / / 0.615 0.599
MEON [38] / / / / 0.693* 0.688* 0.703* 0.701* / / 0.696 0.692

WaDIQaM-NR [54] / / 0.761* 0.739* 0.680* 0.671* 0.729* 0.708* 0.742* 0.725* 0.751 0.731
DistNet-Q3 [55] / / 0.710* 0.702* 0.601* 0.570* / / / / 0.699 0.688

DIQA [56] / / / / 0.704* 0.703* 0.720* 0.708* / / 0.709 0.705
NSSADNN [57] / / / / 0.813* 0.745* 0.825* 0.748* / / 0.817 0.746
HyperNet [21] 0.914 0.909 0.917* 0.906* 0.882* 0.859* / / 0.878* 0.869* 0.913 0.904
DB-CNN [39] 0.915* 0.911* 0.892 0.868 0.869* 0.851* 0.871 0.863 0.859* 0.845* 0.901 0.887
MetaIQA [28] 0.871 0.870 0.887* 0.850* 0.835* 0.802* 0.784* 0.766* 0.777 0.746 0.872 0.853

SARQUE (Proposed) 0.922 0.918 0.923 0.901 0.873 0.855 0.934 0.930 0.861 0.846 0.919 0.906

TABLE III
PERFORMANCE OF SEMANTIC ATTRIBUTE LEARNING AND SCENE CATEGORY LEARNING .

Brightness Colorfulness Contrast Sharpness Noisiness Scene category

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC Accuracy

0.840 0.818 0.814 0.801 0.819 0.815 0.913 0.904 0.831 0.833 85.3%

compared, including BLIINDS-II [31], BRISQUE [14], IL-
NIQE [33], NFERM [51], CORNIA [34] and HOSA [35].
Ten top-performing deep learning-based BIQA models are
also compared, including deepIQA [52], BIECON [53], ME-
ON [38], WaDIQaM-NR [54], DistNet-Q3 [55], DIQA [56],
NSSADNN [57], HyperNet [21], DB-CNN [39], and MetaIQA
[28]. Following the commonly experimental setting in BIQA
[21], [28], [59], we train all models with 80% randomly
selected images of a dataset and test on the rest 20% images.
For each train-test splitting, all models use the same training
and test sets. To avoid bias, we repeat this procedure 10
times and report the median PLCC and SRCC values. All
experimental results are summarized in Table II, where we
highlight the best results in boldface while the second-best
results are underlined.

It is known from Table II that the proposed SARQUE
model delivers the top two performances on all databases.
Particularly, on the SPAQ database, the proposed model is
advantageous over all the compared metrics in terms of both
prediction accuracy and monotonicity. On the KonIQ-10k
database, SARQUE has the best prediction accuracy, and
the SRCC value ranks the second, which is competitive to
HyperNet [21]. On the CID2013 database, our model achieves
the best performance on prediction accuracy and monotonicity.
On the LIVEW and RBID databases, our model delivers

the second-best prediction accuracy and monotonicity (only
slightly worse than HyperNet [21]). In summary, we can
observe from the weighted average PLCC/SRCC values that
SARQUE achieves the best overall performance in evaluating
the quality of images with authentic distortions.

In this work, we train the semantic attribute learning mod-
ule and the scene category prediction module, which also
provides a means to intuitively understand the underlying
reasons why a specific quality score is predicted. To evaluate
the performances of semantic attribute learning module and
the scene category prediction module, we test the prediction
accuracy of these two modules. In implementation, PLCC and
SRCC are employed for evaluating the performance of the
semantic attribute learning module. The prediction accuracy
is adopted to evaluate the performance of scene recognition,
which represents the proportion of scenes that are correctly
identified. The experimental results are summarized in Ta-
ble III. From the table, we know that the prediction of five
semantic attributes achieves very encouraging results, and the
PLCC and SRCC values are all higher than 0.8. Especially for
sharpness, the PLCC and SRCC values are both higher than
0.9. Furthermore, the prediction accuracy of the scene category
reaches 85.3%. The above experimental results show that our
model achieves very encouraging performance in predicting
semantic attributes and scene categories.
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TABLE IV
COMPARISON RESULT OF THE PROPOSED SARQUE MODEL WITH SIX STATE-OF-THE-ART BIQA METRICS BY TRAINING ON SPAQ DATABASE AND

DIRECTLY TESTING ON OTHER DATABASES: KONIQ-10K [26], LIVEW [48], CID2013 [50], AND RBID [49].

Metric
KonIQ-10k [26] LIVEW [48] CID2013 [50] RBID [49]
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

BRISQUE [14] 0.446 0.433 0.593 0.553 0.499 0.504 0.589 0.578
NFERM [51] 0.455 0.447 0.591 0.542 0.437 0.342 0.578 0.570
CORNIA [34] 0.532 0.516 0.663 0.621 0.552 0.465 0.676 0.673

HOSA [35] 0.559 0.534 0.682 0.650 0.593 0.536 0.681 0.670

MT-S [27] 0.486 0.485 0.539 0.493 0.342 0.389 0.530 0.529
HyperNet [21] 0.679 0.645 0.695 0.680 0.624 0.585 0.648 0.647
MetaIQA [28] 0.722 0.686 0.765 0.731 0.737 0.695 0.743 0.735

w/o semantic attribute reasoning 0.767 0.726 0.765 0.743 0.612 0.514 0.750 0.749
SARQUE (Proposed) 0.803 0.778 0.791 0.780 0.740 0.701 0.776 0.769

TABLE V
PERFORMANCE OF OUR SARQUE MODEL EQUIPPED WITH DIFFERENT COMPONENTS ON TARGET DATABASES: SPAQ [27], KONIQ-10K [26], LIVEW

[48], CID2013 [50], AND RBID [49].

Metric
SPAQ [27] KonIQ-10k [26] LIVEW [48] CID2013 [50] RBID [49]

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

Attribute 0.915 0.912 0.915 0.896 0.845 0.810 0.841 0.861 0.837 0.792
Attribute+Scene 0.919 0.915 0.918 0.898 0.852 0.824 0.870 0.875 0.845 0.833

Attribute+Scene+Reasoning 0.922 0.918 0.923 0.901 0.873 0.855 0.934 0.930 0.861 0.846

D. Generalization Ability

Considering that no validation sets may produce the risk
of overfitting the test sets, we further conduct cross-dataset
tests to verify the generalizable performance of the proposed
SARQUE model. Specifically, we train the proposed model on
the SPAQ database and then directly test it on other databases
without doing any fine-tuning. Since most of the existing
BIQA models did not report such experimental results, for fair
comparison, we select several top-performing BIQA models
with open source codes, and conduct the experiments under
the same setting. The compared metrics include BRISQUE
[14], NFERM [51], CORNIA [34], HOSA [35], MT-S [27],
HyperNet [21], and MetaIQA [28]. In addition, to verify
the contribution of semantic attributes on the generalization
ability of the proposed SARQUE model, we perform the
ablation experiments by removing semantic attribute learning
and replacing GCN with FC layers (denoted as w/o semantic
attribute reasoning). The experimental results are listed in
Table IV.

From Table IV, we can observe that the proposed SAR-
QUE model surpasses all the competing BIQA models with
significant margins for both PLCC and SRCC values on all
databases. Especially on the KonIQ-10k database, SARQUE
obtains performance gains of 8.1% in terms of PLCC and 9.2%
in terms of SRCC beyond MetaIQA [28]. From these results,
it is evident that SARQUE delivers the best generalization
performance. Moreover, when the proposed model is trained
without semantic attribute reasoning, the generalization ability
is degraded on all databases. A possible reason is that people’s
judgment of image quality often depends on the perception of
semantic attributes, so semantic attributes are the important

characteristics of image quality for any kind of distortions. In
other words, semantic attributes are the general judgment basis
for perceptual image distortion. In this work, these semantic
attributes can be regarded as middle-level quality features,
which can get rid of the constraints of limited distortion in
the existing databases to a certain extent, and improve the
model generalization ability.

E. Ablation study
To explore the effectiveness of components in the proposed

SARQUE model, ablation studies are further conducted. In
this experiment, we first examine the effectiveness of the
sematic attribute learning module by merging the features
of the five attribute branches and then use four FC layers
to generate image quality score (denoted as attribute). Then,
we demonstrate the performance of SARQUE when using
both sematic attribute learning and scene category prediction
module, but removing the GCN model and replacing it with
four FC layers to generate image quality score (denoted as
attribute+scene). Finally, three components of our SARQUE
model are used jointly to predict image quality score (denoted
as attribute+scene+reasoning). The experimental results are
listed in Table V, where the best results for each database
are shown boldfaced.

It is observed from Table V that when the sematic attribute
learning module is used, the performance on all databases
are already better than most state-of-the-art BIQA models,
which can be seen from Table II. In addition, when the two
components of the SARQUE model are combined to train and
test on target databases, the performance further improves.
Further, the best performance is achieved by using three
components. On the other hand, the performance improvement
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TABLE VI
PERFORMANCE OF OUR SARQUE MODEL EQUIPPED WITH DIFFERENT PRE-TRAINED WEIGHTS ON TARGET DATABASES: SPAQ [27], KONIQ-10K [26],

LIVEW [48], CID2013 [50], AND RBID [49].

Metric
SPAQ [27] KonIQ-10k [26] LIVEW [48] CID2013 [50] RBID [49]

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

w/o Pre-train 0.865 0.859 0.814 0.791 0.482 0.417 0.606 0.524 0.318 0.316
w/ ImageNet Pre-train 0.909 0.904 0.875 0.856 0.819 0.794 0.911 0.907 0.819 0.786

w/o Attributes Pre-train 0.915 0.911 0.909 0.883 0.823 0.804 0.921 0.919 0.841 0.793
w/ Attribute+Scene Pre-train 0.922 0.918 0.923 0.901 0.873 0.855 0.934 0.930 0.861 0.846

TABLE VII
PERFORMANCE OF THE PROPOSED MODEL PER-TRAINED ON A SINGLE SEMANTIC ATTRIBUTE AND TEST ON TARGET DATABASES: SPAQ [27],

KONIQ-10K [26], LIVEW [48], CID2013 [50], AND RBID [49]. THE WEIGHTED AVERAGE PLCC/SRCC VALUES ARE COMPUTED BY CONSIDERING
THE NUMBER OF IMAGES IN EACH DATABASE.

Metric
SPAQ [27] KonIQ-10k [26] LIVEW [48] CID2013 [50] RBID [49] Weighted Average

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

w/ Brightness Pre-train 0.918 0.914 0.912 0.893 0.822 0.807 0.849 0.865 0.854 0.817 0.908 0.896
w/ Colorfulness Pre-train 0.913 0.910 0.918 0.896 0.825 0.805 0.898 0.908 0.859 0.814 0.909 0.897

w/ Contrast Pre-train 0.917 0.913 0.912 0.888 0.851 0.831 0.860 0.872 0.835 0.815 0.908 0.895
w/ Sharpness Pre-train 0.920 0.916 0.917 0.891 0.863 0.833 0.880 0.887 0.833 0.829 0.913 0.899
w/ Noisiness Pre-train 0.919 0.915 0.912 0.891 0.854 0.831 0.859 0.863 0.847 0.812 0.910 0.897

w/ ALL Pre-train 0.922 0.918 0.923 0.901 0.873 0.855 0.934 0.930 0.861 0.846 0.919 0.906

TABLE VIII
PERFORMANCE OF OUR SARQUE MODEL USING DIFFERENT FEATURE FUSING BLOCKS ON TARGET DATABASES: SPAQ [27], KONIQ-10K [26], LIVEW

[48], CID2013 [50], AND RBID [49].

Metric
SPAQ [27] KonIQ-10k [26] LIVEW [48] CID2013 [50] RBID [49]

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

Concatenation [60] 0.919 0.915 0.918 0.898 0.852 0.824 0.870 0.875 0.845 0.833
Point-wise Addition [17] 0.918 0.915 0.919 0.897 0.854 0.823 0.866 0.863 0.853 0.835
Self-attention Fusion [61] 0.919 0.915 0.918 0.897 0.859 0.830 0.884 0.878 0.832 0.807

GCN [30] 0.922 0.918 0.923 0.901 0.873 0.855 0.934 0.930 0.861 0.846

is more significant on three small databases including LIVEW,
CID2013 and RBID. The possible reason is that these databas-
es contain fewer images and scenes, which makes it difficult
for the model to learn a comprehensive representation, so
adding scene reasoning can bring more performance gain. This
demonstrates the necessity of integrating the features from
attributes and scene for reasoning the image quality score.

F. Effectiveness of pre-trained models

In this work, we first employ the SPAQ database to pre-train
the semantic attribute learning and scene category prediction
modules. Then, target databases are used to fine-tune all
parameters for quality prediction. To explore the effective-
ness of the pre-trained weights of semantic attribute learning
and scene category prediction modules, we further conduct
ablation experiments. First, we train and test SARQUE on
five IQA datasets without loading any pre-trained weights
for semantic attribute learning and scene category prediction
modules (denoted as w/o Pre-train). Second, we load ImageNet
[29] pretrained weights to semantic attribute learning and
scene category prediction modules, and train and test on
target database (denoted as w/ ImageNet Pre-train). Third, we

load ImageNet pre-trained weights for the semantic attribute
learning module and the proposed pre-trained weights for the
scene category prediction module to test the performance of
SARQUE (denoted as w/o Attributes Pre-train). Finally, we
load the proposed pre-trained weights for semantic attribute
learning and scene category prediction, and perform the same
training and testing strategies (denoted as w/ Attribute+Scene
Pre-train). The experimental results are listed in Table VI.

From the table, it can be observed that the proposed SAR-
QUE loading attribute+scene pre-train weights overwhelm-
ingly surpasses ImageNet pre-trained weights with significant
margins for both PLCC and SRCC evaluations on all databas-
es. In addition, SARQUE with ImageNet pretrained weights
performs better than that no pre-trained weights, especially
on small databases including LIVEW, CID2013, and RBID.
These results further demonstrate that effective pre-training
strategies are very important for designing deep learning-based
IQA models.

As mentioned before, the semantic attributes are highly
related to image quality. Therefore, during the pre-training pro-
cess of semantic attribute learning, five quality-aware semantic
attributes are used as the targets for model learning, including
brightness, colorfulness, contrast, noisiness and sharpness. To
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(a) MOS (Pre.) = 4.08 (4.04)

Scene label: Landscape

Predicted Scene: Landscape

(c) MOS (Pre.) = 3.01 (3.15)

(f) MOS (Pre.) = 1.28 (1.19)

Scene label: Landscape

Predicted Scene: Landscape

Scene label: Others

Predicted Scene: Others

(b) MOS (Pre.) = 3.36 (3.45)

Scene label: Human

Predicted Scene: Human

(e) MOS (Pre.) = 2.08 (2.01)

Scene label: Cityscape

Predicted Scene: Cityscape

(d) MOS (Pre.) = 2.55 (2.71)

Scene label: Still-life

Predicted Scene: Still-life

Testing image Activation map Attribute distribution Testing image Activation map Attribute distribution

Fig. 6. Illustration of the six testing images, the corresponding activation maps via the commonly used CAM [62] method, and the corresponding predicted
results of the proposed SARQUE model. Bri.: Brightness; Col.: Colorfulness; Con.: Contrast; Sha.: Sharpness; Noi.: Noisiness; GT: Ground Truth; Pre.:
Prediction score.

TABLE IX
PERFORMANCE OF THE PROPOSED MODEL PER-TRAINED ON SPAQ DATABASE AND THEN FINE-TUNING (ONLY USING 20% IMAGES) ON OTHER

DATABASES: KONIQ-10K [26], LIVEW [48], CID2013 [50], AND RBID [49].

Model
KonIQ-10k [26] LIVEW [48] CID2013 [50] RBID [49]
PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

fine-tune the pre-trained model using four FC layers 0.835 0.805 0.838 0.821 0.701 0.606 0.759 0.762
fine-tune the pre-trained model using GCN 0.893 0.872 0.864 0.837 0.784 0.740 0.823 0.818

further investigate the respective importance of the semantic
attributes for quality prediction, we respectively pre-train a
single attribute, and then fine-tune the entire network for the
quality assessment. Table VII summarizes the experimental
results. In general, pre-training for the sharpness task is most
important for quality prediction. Specifically, only per-training
the colorfulness task achieves the best performance on KonIQ-
10k, CID2013 and RBID databases, and only per-training the
sharpness task delivers the best performance on SPAQ and
LIVEW databases. In addition, when all semantic attributes
are combined to per-train the proposed model, the performance
further improves significantly.

G. Effectiveness of GCN

To mine the interaction of semantic attributes and scene
category in the IQA task, we propose a GCN-based semantic
reasoning module. From a different point of view, GCN in
our work is like a feature fusing module to integrate fea-
tures of semantic attributes and scene category. To investigate
the effectiveness of GCN, we further conduct comparison
experiments by replacing GCN with different feature fusing
strategies. Specifically, we compare three feature fusion strate-
gies including Concatenation [60], Point-wise Addition [17]

and Self-attention Fusion [61]. The results are summarized in
Table VIII, where the best results are shown boldfaced. From
Table VIII, we can observe that the proposed model equipped
with GCN outperforms other feature fusion strategies on all
databases, which further proves that using GCN for semantic
reasoning can obtain better performance.

Furthermore, with the help of GCN, the proposed SARQUE
model has achieved the best generalization performance in
cross-database experiments without fine-tuning (in Table IV).
In practice, a good BIQA model is also expected to have
the capability of quickly adapting to a new BIQA task by
performing simple fine-tuning using a small number of training
samples. To explore the quick learning ability of GCN in
the proposed model, we first train SARQUE on the SPAQ
database. Then, we use only 20% of the data in a target
database to fine-tune GCN or FC layers, and the remaining
80% images are used to test the performance of our SARQUE
model. Moreover, for comparison, we use a commonly used
MLP model to replace the GCN model and repeat this experi-
ment, where the MLP model includes four FC layers with 256,
64, 8 and 1 nodes, respectively. The experimental results are
listed in Table IX, where the best results are shown boldfaced.
It can be seen from Table IX that GCN is advantageous over
FC pooling by a sizable margin for all databases. In addition,
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compared with the cross-database experimental results without
fine-tuning (in Table IV), the performance further improves
significantly. A possible reason is that the GCN model takes
into account the connection relationship between nodes and
surrounding neighbor nodes in the process of convolution as
shown in Equ. (9), while MLP does not. This confirms the
advantage of the proposed model, which uses GCN to mine
the inherent relationship between the semantic attributes and
scene category.

H. Visual Analysis

To intuitively demonstrate the explainability of the proposed
SARQUE model, we introduce a visual experiment on six
testing images with different quality scores. Fig. 6 shows the
testing images and the corresponding activation maps via the
commonly used CAM [62] method based on the proposed se-
mantic attribute learning module, as well as the corresponding
predicted results of the proposed SARQUE model, in terms
of quality score regression, semantic attribute prediction, and
scene category recognition. It is worth noting that the ground
truth of semantic attributes represents the human perception
in images, not the absolute intensity in the physical meaning.
For example, both overexposure and underexposure will bring
bad visual experience, resulting in low brightness scores.

From Fig. 6, we have the following observations. 1) With
the decreasing MOS values, the predicted quality scores also
decrease accordingly. In addition, the predicted quality scores
are very close to the ground truth. 2) The appearances of all
activation maps are consistent with the position of attention
when people judge image quality. 3) The proposed SARQUE
model can effectively predict the sematic attributes of images,
which are very close to the ground truth values. 4) The
predicted semantic attributes can explain the dominant reason
of image distortions. Specifically, all attribute values of Fig.
6(a) are very high, therefore it has a high quality score.
For Fig. 6(b), the dominant reason that impacts the quality
perception is noise, and the predicted noisiness value is also
the lowest. The dominant distortions in Figs. 6(c) and 6(d)
are underexposure and overexposure, respectively, and the
predicted brightness values are both the lowest. In Fig. 6(e),
the predicted sharpness value is the lowest, which is consistent
with the human perception. For Fig. 6(f), due to the low
attribute values, its quality score is also very low. From
these visual results, we know that SARQUE can also provide
reasonable explanations (in terms of semantic attributes) on
why a particular quality score is predicted, which is highly
desired in real-world applications.

V. CONCLUSION

In this paper, we have presented an explainable and
generalizable BIQA model via semantic attribute reasoning,
dubbed SARQUE. Different from the existing BIQA models,
SARQUE can characterize the sematic attributes and scene
category that determine image quality. The proposed two-
stream network with multiple branches has demonstrated its
effectiveness in learning sematic attributes and scene category.
Further, by mining the inherent relationship between the

semantic attributes and scene category, the proposed semantic
reasoning module can accurately predict the image quality
score. Extensive experiments conducted on five in-the-wild
image quality databases have demonstrated that SARQUE is
superior to the state-of-the-art BIQA models in terms of both
evaluation accuracy and generalization ability. In addition,
visual analysis have shown that SARQUE can provide the
reasons for the degradation of image quality, which makes
our model explainable.
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