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Abstract—People usually assess image aesthetics according
to visual attributes, e.g., interesting content, good lighting and
vivid color, etc. Further, the perception of visual attributes
depends on the image theme. Therefore, the inherent relationship
between visual attributes and image theme is crucial for image
aesthetics assessment (IAA), which has not been comprehensively
investigated. With this motivation, this paper presents a new
IAA model based on Theme-Aware Visual Attribute Reasoning
(TAVAR). The underlying idea is to simulate the process of human
perception in image aesthetics by performing bilevel reasoning.
Specifically, a visual attribute analysis network and a theme
understanding network are first pre-trained to extract aesthetic
attribute features and theme features, respectively. Then, the first
level Attribute-Theme Graph (ATG) is built to investigate the
coupling relationship between visual attributes and image theme.
Further, a flexible aesthetics network is introduced to extract
general aesthetic features, based on which we built the second
level Attribute-Aesthetics Graph (AAG) to mine the relationship
between theme-aware visual attributes and aesthetic features,
producing the final aesthetic prediction. Extensive experiments
on four public IAA databases demonstrate the superiority of the
proposed TAVAR model over the state-of-the-arts. Furthermore,
TAVAR features better explainability due to the use of visual
attributes.

Index Terms—image aesthetics assessment; visual attribute;
image theme; bilevel reasoning

I. INTRODUCTION

The perception of visual aesthetics is an innate ability of
human. With the continuous advancement of human-centric
visual perception technology, we hope machines can simulate
the human aesthetic processes and possess the same percep-
tion ability of aesthetics [1]–[4]. Image aesthetics assessment
(IAA), which can automatically assess the aesthetic quality of
images [5], has been attracting considerable interest due to
its extensive applications in such as image retrieval [6], album
curation [7], smart photography [8], [9] and image editing [10].
Although people can effortlessly judge the aesthetic quality
of images, it remains a great challenge for computational
aesthetics models.
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Fig. 1. An illustration of our motivation. When judging image aesthetics,
people first understand the image theme, and then analyze the visual attributes
according to the perceived theme. Finally, aesthetic judgment is made through
reasoning.

In the literature, a number of IAA models have been
reported [3]. Early efforts mainly focus on mapping the hand-
crafted visual features to a high or low aesthetic category [11].
Although hand-crafted features have explicit physical mean-
ings, they cannot comprehensively model people’s aesthetic
perception, which are highly complex and abstract. Recently,
deep convolutional neural networks (CNN) have demonstrated
their advantage in IAA [12], [13]. Despite the notable advances
achieved, the existing deep IAA models largely work in a pure
data-driven manner, which is different from the mechanism of
human aesthetic perception.

Generally, people’s judgment on image aesthetics comes
from the perception of various visual attributes [14]. As
illustrated in Fig. 1, during image aesthetics rating, people first
understand the image theme, based on which they proceed to
analyze the visual attributes, e.g., interesting content, good
lighting, vivid color and depth of field, etc. Finally, the
aesthetic judgment is made through a complex reasoning.
This characteristic has been confirmed in related research on
photography [15] and aesthetics [12], [16]. However, most of
the existing deep IAA models usually map the image into a
latent aesthetic feature space directly, which is not consistent
with the human perception of image aesthetics [3]. In addition,
most of the models can only generate a single scalar aesthetic
score or aesthetic distribution, and the lack of explainability
might hamper their applications in real-world scenarios.

Motivated by the above facts, this paper presents a Theme-
Aware Visual Attribute Reasoning (TAVAR) model for image
aesthetics assessment, with the objective to model the aesthetic
perception process of human based on a bilevel reasoning
framework. Specifically, considering that people’s judgment
on image aesthetics depends on the perception of visual
attributes, which are further coupled with image theme, a
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Visual Attribute Analysis Network (VAAN) and a Theme
Understanding Network (TUN) are first pre-trained to extract
aesthetic attribute features and theme features, respectively.
Then, the first level Attribute-Theme Graph (ATG) is built to
investigate the coupling relationship between visual attributes
and image theme, producing the theme-aware visual attribute
features. Further, a flexible aesthetics network is introduced
to extract the general aesthetic features, based on which we
built the second level Attribute-Aesthetics Graph (AAG) to
mine the relationship between theme-aware visual attributes
and aesthetic features, producing the final aesthetic prediction.
Extensive experimental results demonstrate that the proposed
TAVAR model not only accurately assesses the image aesthetic
quality, but also predicts the visual attributes simultaneously
to facilitate model explainability.

The contributions of this work can be summarized with the
following points:
• We propose a new IAA model based on theme-aware

visual attribute reasoning, dubbed TAVAR, which sim-
ulates the aesthetic perception process of human and
delivers the state-of-the-art performance. In contrast to
the existing IAA models that only predict a single quality
score or aesthetic distribution, the proposed model can
also output the aesthetic attributes, which in turn facilitate
better model explainability.

• We propose a bilevel aesthetic reasoning framework
based on the attribute-theme graph (ATG) and the
attribute-aesthetics graph (AAG). ATG is designed to
investigate the interaction between image theme and
visual attributes, based on which the theme-aware visual
attribute features are further combined with the general
aesthetic features to perform the second-level reasoning,
producing the final aesthetic score.

• We conduct extensive experiments and comparisons on
four public IAA databases, and the experimental results
demonstrate the superiority of the proposed TAVAR mod-
el over the state-of-the-arts. Visual analysis is also pro-
vided to demonstrate the explainability of the proposed
model.

The remainder of this paper is structured as follows. In
Section II, we review the related works on IAA and graph
reasoning networks. Section III describes the details of the pro-
posed model. Experimental results and analysis are presented
in Section IV. Finally, we conclude this paper in Section V.

II. RELATED WORKS

In this section, we briefly review the literature related to
image aesthetics assessment and graph reasoning networks that
are closely related to our work.

A. Image Aesthetics Assessment

Early works on IAA are mainly based on hand-crafted
features. For example, Ke et al. [11] proposed an IAA model to
distinguish high-quality and low-quality images by designing
a set of perceptual features, including spatial distribution of
edges, color distribution, and hue count, etc. A Bayes classifier
was used to integrate the features and achieve the aesthetic

decision. In [17], the authors focused on the foreground sub-
ject and developed a set of high-level features for describing
photo aesthetic quality. Tang et al. [18] proposed a content-
based IAA model by first separating the subject from the
background. Then, aesthetic features were extracted from both
the subject region and the background region to compute the
image aesthetic score. In addition to aesthetic-related features,
generic features were also used to measure image aesthetic
quality, e.g. the global image descriptor (GIST) [19] and scale-
invariant feature transform (SIFT) [20]. While these hand-
crafted features have explicit physical meanings, they are typi-
cally built based on the still limited understanding of aesthetics
and cannot describe image aesthetics comprehensively.

With the considerable progress in deep learning, a variety
of CNN models have been developed and become the de
facto configuration in building modern IAA models. Lu et
al. [21] designed a double-column CNN model to learn
aesthetic features from both the global and local views. The
style features of images were also utilized to improve the
prediction accuracy. In [22], Jin et al. proposed a deep
IAA model based on GoogLeNet named ILGNet, which
integrated both the inception modules and a connected layer
of local and global features. In [16], the authors proposed
a new CNN architecture by joint learning of meaningful
photographic features and image scene information. Chen
et al. [23] proposed an IAA model based on the adaptive
fractional dilated convolution (AFDC), which can explicitly
relate the perception of image aesthetics to the aspect ratios
while preserving the composition. Li et al. [24] proposed a
personality-assisted multi-task deep IAA model, which can
improve the aesthetic representation ability by jointly learning
personality features. In [25], Shu et al. proposed a deep IAA
model called PI-DCNN, which utilized the prior knowledge
of photo and photographic elements as privileged information
and transferred the privileged information to formulate image
aesthetics assessment. More recently, She et al. [26] proposed
an end-to-end graph-based representation learning framework
for image aesthetics assessment, called HLA-GCN, which
utilized two LA-GCN modules to capture layout information.
While notable advances have been achieved, these methods
do not explicitly model the process of human perception of
aesthetics, which is typically characterized by an interaction
between image theme and visual attributes in determining the
overall aesthetic quality.

B. Graph Reasoning Networks
With the capability of relationship reasoning, graph-based

networks have been applied to a variety of high-level vision
tasks [27]. Early works mainly focus on modeling graph data
using simple discriminative models, e.g. Conditional Random
Fields (CRFs) [28] and random walk networks [29]. Recently,
Graph Convolution Network (GCN) [30] has been proposed by
generalizing CNN to graph data based on two core operations,
i.e., aggregating and transforming node embeddings, which
has demonstrated notable advantage in modeling complex
relationships [31]. For example, Kipf et al. [30] proposed a
GCN model by introducing a localized and well-behaved prop-
agation rule for semi-supervised learning on graph-structured
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Fig. 2. The overall structure of the proposed Theme-Aware Visual Attribute Reasoning (TAVAR) model for image aesthetics assessment. 1) Visual Attribute
Analysis Network (VAAN) is pre-trained to extract visual attribute features. 2) Theme Understanding Network (TUN) is pre-trained to extract image theme
features. 3) Aesthetic network is used to extract the general aesthetic features. 4) Attribute-Theme Graph (ATG) is used to mine the relationship between
image theme and visual attributes. 5) Attribute-aesthetic Graph (AAG) is used to further mine the relationship between the theme-aware visual attributes and
general aesthetic features.

data. Yang et al. [32] used GCN to investigate the contextual
information between objects and relations for scene graph
generation. Nie et al. [33] utilized GCN to learn the utterance
features for emotion detection in conversation. In this paper,
we leverage GCN to build a bilevel reasoning framework,
aiming to model the aesthetic perception process of human.

III. PROPOSED MODEL

The overall structure of the proposed TAVAR model is
illustrated in Fig. 2. Specifically, inspired by human evaluation
process of image aesthetics, we first train two feature extrac-
tors to obtain visual attribute and theme features based on the
Visual Attribute Analysis Network (VAAN) and the Theme
Understanding Network (TUN). Then, the first level Attribute-
Theme Graph (ATG) is designed to mine the coupling relation-
ship between visual attributes and image theme in determining
aesthetic perception. Further, a flexible aesthetic network was
introduced to extract the general aesthetic features, based on
which we develop the second level Attribute-Aesthetics Graph
(AAG) to further explore the relationship between theme-
aware attribute features and aesthetic features, producing the
final aesthetic score.

A. Feature Extractors

Visual Attribute Analysis Network (VAAN). Study in
[16] has proven that people judge image aesthetic quality
mainly based on visual attributes. Therefore, visual attributes
strongly correlate with image aesthetics, which can be regard
as the aesthetic elements to describe an image intuitively, e.g.
interesting content, good lighting or vivid color. In this part,
we design a multi-branch CNN model to learn the aesthetics-
aware visual attributes, which is illustrated in the upper part
of Fig. 2. Specifically, we build the network using ResNet-50
[34] by removing the fully connected layers, which shares the
feature extraction among branches. Then, we employ six multi-
layer perceptrons (MLPs) to further map the shared features
to six visual attributes, including interesting content, object
emphasis, vivid color, depth of field, color harmony, and good
lighting [35]. Specifically, for an input image x, the hidden
features ha are first obtained from the shared feature extraction
network Fθa as:

ha = Fθa(x), (1)

where θa denotes the parameter set of the shared feature
extraction network Fθa .

Then, six MLPs are used to build the six attribute branches.
Since the Parametric Rectified Linear Unit (PReLU) [36] can
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improve the performance of deep model and reduce the risk
of overfitting compared with ReLU, we introduce PReLU as
activation function in MLPs. Next, we leverage the six attribute
branches to further map the hidden features ha to the visual
attributes â, which is defined as:

â =MLPθm(ha), (2)

where θm, (m = 1, 2, ..., 6) denotes the parameters of each
attribute branch MLPθm , and â = {â1, â2, . . . , â6} denotes
six predicted visual attributes.

During the pre-training of VAAN, we assume that a visual
attribute dataset Da = {xi, ai}Na

i=1 can provide images and
the corresponding visual attribute labels, where ai denotes the
labeled visual attributes of image xi (i = 1, 2, . . . , Na), and
Na represents the number of samples in Da. In this work,
the training goal of VAAN is to predict the values of visual
attributes as a regression task. Considering that L1 loss has
a stronger robustness and can avoid the problem of gradient
explosion in the regression task [37], L1 loss is leveraged to
optimize the parameters θa and θm based on the Da dataset,
which is defined as:

L1 =
1

Na

Na∑
i=1

| ai − âi |, (3)

where âi denote the predicted visual attributes of image xi,
which is computed by:

âi =MLPθm(Fθa(xi)). (4)

The visual attribute analysis network can be built by training
on Da and can simultaneously extract the features of all visual
attributes, which will be used as inputs of the subsequent graph
reasoning module.

Theme Understanding Network (TUN). To understand the
aesthetics of an image, people first pay attention to the theme
because image aesthetics is strongly related to the theme of
the image [15]. In other words, it has been acknowledged that
people would first figure out what they see in an image before
they make aesthetic judgment [12]. Further, image theme and
aesthetic attributes are always tightly coupled, so people’s
understanding of image theme will affect the judgment of
visual attributes [16]. As a result, when using visual attributes
for building the IAA model, the theme category of an image
should be simultaneously considered to achieve comprehensive
prediction. With this consideration, a theme understanding
network is also integrated in this work. Specifically, another
ResNet-50 backbone [34] is first employed to build the theme
understanding network. Then, a multi-layer perceptron (MLP)
with PReLU activation function is utilized to map the input
image xi to the predicted theme categories, where the last
fully connected layer produces six outputs, which represent six
theme categories. Finally, a softmax nonlinearity operation is
performed to generate the predicted theme probablities, which
is formulated as:

1 1 1 1 1 1

1 1 0 0 1 1

1 0 1 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 0 0 0 1

The. IC OE VC DoF CH

The.

IC

OE

VC

DoF

CH

1

0

1

0

0

1

GL

1 0 1 0 0 1GL 1

1 1 1 1 1 1

1 1 0 0 1 1

1 0 1 1 0 0

1 0 1 1 1 0

1 1 0 1 1 0

1 1 0 0 0 1

Aes. IC OE VC DoF CH

Aes.

IC

OE

VC

DoF

CH

1

0

1

0

0

1

GL

1 0 1 0 0 1GL 1

(a) (b)

Fig. 3. Illustration of the adjacency matrices Aac and Aaa. (a): the adjacency
matric Aac; (b): the adjacency matric Aaa; IC: Interesting Content; OE:
Object Emphasis; VC: Vivid Color; DoF: Depth of Field; CH: Color Harmony;
GL: Good Lighting; The.: Theme; Aes.: Aesthetic.

ĉ =MLPθk(Fθc(xi)), (5)

where θc and θk denote the parameters of the theme under-
standing network Fθc and the multi-layer perceptron MLPθk
respectively, and ĉ denotes the predicted theme probablities.

To train the theme understanding network, we adopt a
dataset Dc = {xi, ci}Nc

i=1 with images and the corresponding
theme category labels, where ci denotes the labeled theme
category of image xi (i = 1, 2, 3, . . . , Nc), and Nc represents
the number of images in Dc. In this work, the proposed Them
Understanding Network (TUN) is used to predict the theme
category, which is trained as a classification task. Therefore,
we introduce the popular cross-entropy loss to optimize the
parameters θc and θk, which is defined as:

L2 = −
Nc∑
i=1

ci log (ĉi), (6)

where ĉi denotes the predicted theme category of image xi,
which is computed by:

ĉi =MLPθk(Fθc(xi). (7)

The theme understanding network is trained on Dc, which
can not only predict the theme category of the image but also
generate the theme features, which will be also input into the
subsequent graph reasoning module. In our design, although
both the VAAN and TUN take advantage of ResNet-50 as the
backbone network to extract feature, there are two major dif-
ferences between them. First, VAAN contains a multi-branch
regressor for predicting six visual attributes, while TUN only
uses an MLP to achieve theme category prediction. Therefore,
VAAN and TUN have different prediction heads. Second, the
training objectives of them are different. VAAN is trained
to predict the value of aesthetic attributes, which belongs
to the regression task. TUN is built to predict the category
probabilities of theme, which belongs to the classification task.
As a result, VAAN and TUN use different loss functions to
optimize the parameters of model.
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B. Bilevel Aesthetic Reasoning

Attribute-Theme Graph (ATG). As mentioned above,
people usually assess image aesthetics according to visual
attributes. Further, the perception of visual attributes depends
on the image theme. Therefore, we first build an attribute-
theme graph to investigate the relationship between image
theme and visual attribute, which is formulated as:

Gac = (Hac,Aac), (8)

where Hac = {Ha,Hc}, Ha and Hc denote the node fea-
tures of visual attributes and image theme extracted form
the aforementioned feature extractors, and Aac is the theme-
centric adjacency matrix, which is built based on the pre-
defined manner and can be calculated as illustrated in Fig.
3(a). The motivation to build Aac is two-fold. First, considering
the relationship between image theme and visual attributes, we
take the theme feature as the central node, and all the attribute
nodes are connected to the central theme node. The underlying
reason is that the perception of visual attributes depends on
the image theme. Second, considering the relationship between
different visual attributes, we connect interesting content and
DoF, interesting content and color harmony, object emphasis
and vivid color, object emphasis and good lighting, vivid
color and DoF, color harmony and good lighting, respectively.
Finally, the attribute-theme GCN is built as:

Hac∗ = GCNθac
(Gac), (9)

where GCNθac
denotes a graph convolution network, θac

denotes the learnable parameters in GCNθac
. In addition,

Hac∗ = {Ha∗,Hc∗}, where Ha∗ and Hc∗ denote the updated
node feature of visual attributes and image theme, respectively.

In implementation, GCNθac can be described as:

Hac∗ = ReLU(ÂacHacWac), (10)

where Wac denotes the transformation matrix, and Âac is the
normalized version of the adjacency matrix Aac. Following the
above operations, we can build a GCN to obtain the attribute-
theme graph.

Attribute-Aesthetics Graph (AAG). From the above
theme-attribute GCN, we can obtain the theme-aware visual
attribute features Ha∗. Then, taking into account the comple-
mentary role of visual attribute features and general aesthetic
features in determining the overall image aesthetic quality
[16], we propose the second-level attribute-aesthetics graph
reasoning. To this end, we first utilize an aesthetics network
to extract the general aesthetic features. Then, we construct the
AAG to mine the relationship between theme-aware visual at-
tribute features and aesthetic features, aiming to achieve more
comprehensive feature representation ability of aesthetics. In
this work, the recently proposed Swin Transformer [38] is
utilized as the aesthetics network Fθp , which can be formulated
as:

Hp = Fθp(x), (11)

Algorithm 1 The proposed TAVAR model.
Input: IAA training set D, which consists of three subsets

including Da = {xi, ai}Na
i=1,Dc = {xi, ci}Nc

i=1,DIAA =
{xi, yi}

Nz
i=1.

Output: Predicted aesthetic score ŷ;
1: Initialize all the parameters of the proposed model;
2: // Feature Extractor Pre-training ;
3: For iteration = 1, 2, . . . ,do;
4: Sample a batch of k images from Da;
5: For j = 1, 2, . . . , N do;
6: Output {â}ki=1 by using Fθa and MLPθm ;
7: Update θa and θm by computing L1;
8: end For
9: end For

10: For iteration = 1, 2, . . . ,do;
11: Sample a batch of k images from Dc;
12: For j = 1, 2, . . . , N do;
13: Output {ĉ}ki=1 by using Fθc and MLPθk ;
14: Update θc and θk by computing L2;
15: end For
16: end For
17: Freezing the parameters of feature extractors;
18: // Bilevel Aesthetic Reasoning ;
19: Building the adjacency matrixes Aac and Aaa;
20: For iteration = 1, 2, . . . ,do;
21: Sample a batch of k images from DIAA;
22: For j = 1, 2, . . . , N do;
23: Output aesthetic score {ŷ}ki=1 by using GCNθac ,

Fθp , GCNθaa
and FCθl ;

24: Update the parameters of θac, θp, θaa and θl by
computing L3;

25: end For
26: end For

where θp denotes the parameter set of the network Fθp , and
Hp denotes the extracted aesthetic features.

Then, the attribute-aesthetics graph is formulated as:

Gaa = (Haa,Aaa), (12)

where Aaa is the aesthetics-centric adjacency matrix of Gaa,
which is illustrated in Fig. 3(b). Like Aac, the motivation to
build the adjacency matrix Aaa includes two aspects. First,
considering the relationship between different visual attributes,
we connect different theme-aware visual attributes in the same
way as Aac. Moreover, based on the relationship between
theme-aware visual attributes and general aesthetics, we regard
the features of general aesthetics as the central node, and
all the theme-aware visual attribute nodes are connected to
it. Based on the attribute-aesthetics graph, we can obtain
the updated node features that integrate theme-aware visual
attribute and aesthetic features,

Haa∗ = GCNθaa(Gaa), (13)

where θaa denotes the learnable parameters in GCNθaa
, and

GCNθaa
can be described as:
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Haa∗ = ReLU(ÂaaHaaWaa), (14)

where Waa denotes the transformation matrix, and Âaa is the
normalized version of the adjacency matrix Aaa. Based on the
above operations, the attribute-aesthetics graph can be built.

Finally, we append a FC layer to map the updated node
features Haa∗ to the overall aesthetic quality score ŷ, which
is defined as:

ŷ = FCθl(H
aa∗), (15)

where θl represents the parameters of the FC layer.
During the training of the whole TAVAR model, we use

DIAA = {xi, yi}
Nz
i=1 to denote the image aesthetics assessment

dataset, where yi denotes the ground truth aesthetic score of
image xi (i = 1, 2, . . . , Nz), and Nz represents the number
of samples in DIAA. Based on DIAA, we employ L1 loss to
optimize the parameters of the whole model, which is defined
as:

L3 =
1

Nz

Nz∑
i=1

| yi − ŷi | . (16)

The training process of the proposed TAVAR model is
summarized in Algorithm 1.

IV. EXPERIMENTAL RESULTS

A. Databases

To verify the performance of the proposed TAVAR model,
we conduct experiments on four popular IAA databases,
including AADB [16], EVA [39], AVA [40] and PARA [41].

AADB database [16]. This database contains 10,000 im-
ages rated by a total of 190 users. Each image is annotated
with the overall aesthetic score and 11 visual attributes by at
least 5 users. These attributes include light, content, object,
color harmony, vivid color, depth of field (DoF), motion blur,
rule of thirds, balancing element, repetition, and symmetry.
The visual attributes and overall aesthetic scores range from
[-1, 1] and [1, 5] respectively. In our experiment, six of the
above eleven visual attributes are used to pre-train the visual
attribute analysis branch. During aesthetic quality prediction,
following the widely adopted setting [13], [35], [42], 8,500
images are used for model training, 500 images are used for
validation, and the rest 1,000 images are used for testing.

EVA database [39]. This database includes 4,070 images,
where each image is annotated by 30 to 40 users. In addition
to the overall aesthetic score, it also provides labels for 6
common theme types, including human, animals, natural and
rural scenes, architectures and city scenes, still life, and others.
In this work, we use the EVA database to pre-train the theme
understanding branch. During performance evaluation, 3,500
images are used for training, and the rest 570 images are used
for testing.

AVA database [40]. This database contains more than
250,000 images collected from the website of DPChallenge,

where each image is annotated by 210 users on average. The
overall aesthetic scores range from [1, 10]. Following the
common setting in IAA [26], we utilize a total of 235, 503
images for training, and 19, 997 images for testing. For the
aesthetic binary classification, images with overall aesthetic
scores above 5 are categorized into high aesthetic quality, and
the other images are categorized into low aesthetic quality.

PARA database [41]. This database contains a total of
31,220 images and each image is annotated by 25 subjects
in average and 438 subjects in total. Each image is annotated
with 4 human-oriented subjective attributes and 9 image-
oriented objective attributes. In addition, PARA also provides
labels for 10 theme types, including portrait, animal, plant,
scene, building, still life, night scene, food, indoor, and others.
The overall aesthetic scores range from [1, 5]. Following the
standard setting [41], 28,220 images are used for training,
and the rest 3000 images are used to test the performance
of models.

B. Implementation Details

For all the experiments, we first resize images into 244 ×
244 × 3, and then randomly crop into 224 × 224 × 3 for
input. In the test stage, we directly resize original images into
224×224×3. In implementation, we first employ the AADB
database [16] and EVA database [39] to pre-train the attribute
and theme feature extractors. Then, we freeze the parameters
of feature extractors, and target databases are used to train the
bilevel reasoning model and fine-tune the aesthetic network
simultaneously. Specifically, the stochastic gradient descent
(SGD) is used as the optimizer, and the initial learning rate is
0.03 with a warm-up strategy. We utilize Pytorch to implement
the proposed model and train it on a computer with Intel Core
i7-9700K CPU @ 3.60GHz, and NVIDIA GeForce RTX 3090
24G GPU.

For comparison with the existing IAA models, Pearson
linear correlation coefficient (PLCC) is used to evaluate the
accuracy of the prediction results, and Spearman rank or-
der correlation coefficient (SRCC) is used to measure the
prediction monotonicity [43], [44]. Before computing PLCC,
the predicted scores need to passe through a five-parameter
nonlinear mapping,

ẑ = ξ1

(
0.5− 1

1 + eξ2(z−ξ3)

)
+ ξ4z + ξ5, (17)

where z donates the prediction score, ẑ denotes the mapped
score, and ξi, i=1, 2, . . . , 5, are the fitting parameters. Then,
the PLCC is computed by,

PLCC =

∑N
i=1(si − µsi)(ẑi − µẑi)√∑N

i=1(si − µsi) ∗
∑N
i=1(ẑi − µẑi)

, (18)

where N is the number of the testing samples, si and ẑi
represent the ground truth score and the mapped score of i-th
test image respectively.

The SRCC is computed by,

SRCC = 1−
6
∑N
i=1 d

2
i

N(N2 − 1)
, (19)
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TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED TAVAR MODEL WITH
THE STATE-OF-THE-ART IAA MODELS ON THE AADB [16] DATABASE.

Method SRCC PLCC ACC (%)

RegNet(AlexNet) [16] 0.678 - -

Hou et al.(VGG16) [47] 0.689 - -

Malu et al.(ResNet-50) [35] 0.689 - -

PI-DCNN(ResNet-152) [25] 0.705 - -

RGNet(ResNet-101) [48] 0.710 - -

Unified IAA(ResNet-101) [42] 0.726 - -

NIMA(ResNet-50) [13] 0.708* 0.711* 80.1*

MLSP(Inception-v2) [49] 0.725* 0.726* 78.2*

PA IAA(DenseNet-121) [24] 0.720* 0.728* 70.9*

TANet(MobileNet-v2) [12] 0.738* 0.737* 79.8*

MUSIQ(ViT) [50] 0.706* 0.712* 76.3*

Celona et al.(EfficientNet) [51] 0.757 0.762 81.6

TAVAR (Proposed) 0.761 0.763 81.9

where di represents the difference between the ranks of the
ground truth and predicted scores. A good IAA model is
expected to deliver higher PLCC and SRCC values [45], [46].

Moreover, the overall accuracy (ACC) is employed to eval-
uate the performance of aesthetic binary classification on AVA
database, which is computed by,

ACC =
TP + TN

P +N
, (20)

where P and N denote the number of high and low aesthetic
images, respectively. TP and TN are the number of correctly
classified images. The ACC is in the range [0, 1], and higher
ACC value represents better classification performance.

C. Performance Evaluation

Performance on AADB Database. We first compare the
performance of the proposed TAVAR model with the relevant
state-of-the-arts on the AADB database. In experiments, we
evaluate the performance of these models on two aesthetic
tasks, i.e., aesthetic binary classification and aesthetic score
regression. The experimental results are summarized in Table
I, where the best results are marked in boldface and the
results with * are obtained from our experiments. Since several
previous IAA models only test the SRCC values and the
source codes of those works have not been released, their
PLCC and ACC results are marked by ”-”. It is known
from the experimental results that the proposed TAVAR model
outperforms other comparison models in terms of SRCC,
PLCC and ACC values. This demonstrates that our TAVAR
using theme-aware visual attribute reasoning is very effective
for the IAA task.

Performance on EVA and PARA Databases. EVA [39]
and PARA [41] databases are two recently released new IAA
databases, and most of the existing models did not report
experimental results on them. For comparison, we retrain five

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED TAVAR MODEL WITH

THE STATE-OF-THE-ART IAA MODELS ON THE EVA [39] AND PARA [41]
DATABASES.

Method SRCC PLCC ACC (%)

EVA database

NIMA(ResNet-50) [13] 0.725* 0.738* 70.4*

MLSP(Inception-v2) [49] 0.677* 0.684* 85.5*

PA IAA(DenseNet-121) [24] 0.742* 0.761* 72.4*

MUSIQ(ViT) [50] 0.715* 0.747* 88.3*

TANet(MobileNet-v2) [12] 0.794* 0.769* 88.5*

TAVAR 0.799 0.810 89.6

PARA database

NIMA(ResNet-50) [13] 0.886* 0.923* 89.0*

MLSP(Inception-v2) [49] 0.842* 0.892* 84.2*

PA IAA(DenseNet-121) [24] 0.877* 0.919* 87.5*

MUSIQ(ViT) [50] 0.882* 0.918* 88.1*

TANet(MobileNet-v2) [12] 0.883* 0.917* 89.2*

TAVAR 0.911 0.940 89.7

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED TAVAR MODEL WITH

THE STATE-OF-THE-ART IAA MODELS ON THE AVA [40] DATABASE.

Method SRCC PLCC ACC (%)

A-Lamp(VGG16) [52] - - 82.5

ILGNet(GoogLeNet) [22] - - 82.7

RegNet(AlexNet) [16] 0.558 - 77.3

USAR(AlexNet) [53] 0.578 - 78.1

PA IAA(DenseNet-121) [24] 0.666 - 82.9

PA IAA(Inception-v3) [24] 0.677 - 83.7

GPF-CNN(InceptionNet) [54] 0.690 0.704 81.8

NIMA(VGG16) [13] 0.592 0.610 80.6

NIMA(Inception-v2) [13] 0.612 0.636 81.5

NIMA(ResNet-50) [13] 0.690 0.694 79.3

AFDC(ResNet-50) [23] 0.649 0.671 83.0

Unified IAA(ResNet-101) [42] 0.719 0.720 80.8

HLA-GCN(ResNet-50) [26] 0.665 0.687 84.6

TAVAR 0.725 0.736 85.1

popular IAA models with public codes including NIMA [13],
MLSP [49], PA IAA [24], MUSIQ [50] and TANet [12].
All experiments are conducted under the same setting as the
proposed TAVAR. The experimental results are summarized in
Table II, where the best results are marked in boldface. It is
known from the experimental results that the proposed TAVAR
model achieves the best performances on both EVA [39] and
PARA [41] databases. On the EVA database, TAVAR achieves
the best PLCC, SRCC and ACC of 0.799, 0.810 and 89.6%,
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TABLE IV
PLCC/SRCC VALUES OF BACKBONE NETWORKS AND TAVAR IN LEAVE-ONE-THEME-OUT CROSS VALIDATION ON THE EVA [39] AND PARA [41]
DATABASES. ANI.: ANIMALS, A.&C.: ARCHITECTURES AND CITY SCENES, NAT.: NATURAL AND RURAL SCENES, STI: STILL LIFE, OTH.: OTHERS,

BUI.:BUILDING, IND.: INDOOR, NIG.: NIGHT SCENE, POR.: PORTRAITURE, AVE.: AVERAGE, MOB.-V3: MOBILENET-V3, S-TRANS.: SWIN
TRANSFORMER.

Database Theme Mob.-v3 TAVAR Gain (%) ResNet-50 TAVAR Gain (%) S-Trans. TAVAR Gain (%)

EVA

Ani. 0.395/0.383 0.465/0.455 7.0/7.2 0.444/0.439 0.508/0.490 6.4/5.1 0.478/0.453 0.572/0.566 9.4/11.3

A.&C. 0.622/0.614 0.667/0.676 4.5/6.2 0.639/0.631 0.703/0.705 6.4/7.4 0.656/0.655 0.725/0.731 6.9/7.6

Human 0.445/0.425 0.495/0.490 5.0/6.5 0.461/0.450 0.521/0.501 6.0/5.1 0.532/0.495 0.561/0.534 2.9/3.9

Nat. 0.669/0.670 0.712/0.717 4.3/4.7 0.676/0.687 0.740/0.743 6.4/5.6 0.667/0.662 0.739/0.746 7.2/8.4

Sti. 0.483/0.479 0.576/0.577 9.3/9.8 0.538/0.512 0.580/0.561 4.2/4.9 0.538/0.516 0.603/0.576 6.5/6.0

Oth. 0.704/0.683 0.720/0.702 1.6/1.9 0.687/0.682 0.752/0.711 6.5/2.9 0.722/0.704 0.779/0.724 5.7/2.0

Ave. 0.553/0.542 0.606/0.603 5.3/6.1 0.574/0.567 0.634/0.619 6.0/5.2 0.599/0.581 0.663/0.646 6.4/6.5

PARA

Ani. 0.797/0.765 0.803/0.776 0.6/1.1 0.804/0.786 0.812/0.792 0.8/0.6 0.824/0.802 0.856/0.835 3.2/3.3

Bui. 0.864/0.769 0.889/0.814 2.5/4.5 0.874/0.807 0.893/0.825 1.9/1.8 0.887/0.811 0.915/0.856 2.8/4.5

Food 0.790/0.748 0.810/0.774 2.0/2.6 0.787/0.752 0.798/0.764 1.1/1.2 0.836/0.805 0.870/0.839 3.4/3.4

Ind. 0.843/0.763 0.897/0.834 5.4/7.1 0.882/0.810 0.904/0.838 2.2/2.8 0.895/0.840 0.932/0.890 3.7/5.0

Nig. 0.866/0.848 0.879/0.860 1.3/1.2 0.884/0.870 0.941/0.936 5.7/6.6 0.892/0.877 0.923/0.913 3.1/3.6

Oth. 0.907/0.731 0.941/0.802 3.4/7.1 0.937/0.743 0.954/0.821 1.7/7.8 0.943/0.801 0.966/0.849 2.3/4.8

Plant 0.901/0.786 0.912/0.815 1.1/2.9 0.904/0.810 0.910/0.822 0.6/1.2 0.926/0.837 0.939/0.858 1.3/2.1

Por. 0.852/0.796 0.861/0.811 0.9/1.5 0.858/0.813 0.868/0.822 1.0/0.9 0.882/0.841 0.910/0.873 2.8/3.2

Scene 0.913/0.866 0.919/0.880 0.6/1.4 0.916/0.879 0.923/0.882 0.7/0.3 0.932/0.899 0.946/0.920 1.4/2.1

Sti. 0.918/0.869 0.923/0.877 0.5/0.8 0.923/0.875 0.940/0.899 1.7/2.4 0.931/0.894 0.946/0.915 1.5/2.1

Ave. 0.865/0.794 0.883/0.824 1.8/3.0 0.877/0.815 0.894/0.840 1.7/2.5 0.895/0.841 0.920/0.875 2.5/3.4

surpassing the second-best model by 0.5% (SRCC), 4.1%
(PLCC) and 1.1% (ACC), respectively. On the PARA database,
the proposed TAVAR is advantageous over the existing IAA
models by a sizable margin in terms of both the aesthetic
score regression task (SRCC and PLCC) and the binary
classification task (ACC). This further confirms the advantage
of the proposed TAVAR model.

Performance on AVA Database. We further evaluate the
performance of the proposed TAVAR model on the large-
scale AVA database [40] and compare it with the state-of-
the-art IAA models. The experimental results are summarized
in Table III, where the best results are marked in boldface
and the ”-” means that the results is not available. From
Table III, we can observe that the proposed TAVAR surpasses
all the competing IAA models on the AVA database. For
the aesthetic score regression task, TAVAR also achieves
the best results both on the prediction monotonicity (SRCC)
and accuracy (PLCC). For the binary classification task, the
proposed TAVAR achieves 85.1% classification accuracy and
outperforms the second-best model HLA-GCN [26] by 0.5%.
This demonstrates that the proposed TAVAR achieves the best
performance on AVA database in terms of both the binary
classification task and the aesthetic score regression task.

D. Generalization Ability
Cross Theme Evaluation. The proposed theme-aware

TAVAR model is inspired by the mechanism of human percep-

tion of aesthetics. To validate the generalization performance
of the proposed model for unknown themes, we compare our
model with three backbone networks by using the Leave-One-
Theme-Out cross validation on EVA and PARA databases,
which have theme annotations. In implementation, suppose
there are N kinds of themes in a database, we use (N − 1)
kinds of themes for training and the remaining one theme
is used for performance test. The tested backbone networks
include Mobilenet-v3 [55], ResNet-50 [34] and Swin Trans-
former [38], ranging from the lightweight, most commonly
used, and most advanced backbones. Specifically, we first di-
rectly employ these backbone networks to train and test on the
AADB, EVA, AVA and PARA databases, respectively. Then,
we embed them into the proposed theme-aware IAA model as
the aesthetics network to repeat the experiments respectively.
The performances in terms of PLCC/SRCC values are listed
in Table IV. To the best of our knowledge, the Leave-One-
Theme-Out experiment has not been conducted in existing
IAA works, but it is very important for real-world applications
of IAA models.

From Table IV, we have the following observations. (1)
The proposed TAVAR achieves very promising performance
the Leave-One-Theme-Out cross validation on both databases.
Especially on the PARA database, TAVAR using any backbone
network can achieve PLCC and SRCC values greater than
0.87. This indicates that our TAVAR model can effectively
learn the influence of themes on aesthetic perception and
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TABLE V
PERFORMANCE COMPARISON OF THE PROPOSED TAVAR MODEL WITH
THE STATE-OF-THE-ART IAA MODELS WHEN TRAINING AND TEST ON

DIFFERENT DATABASES.

Model Training
Test

AADB EVA AVA PARA

NIMA [13]

AADB - 0.542 0.272 0.715

EVA 0.457 - 0.278 0.642

AVA 0.471 0.531 - 0.626

PARA 0.685 0.655 0.335 -

Average 0.538 0.576 0.295 0.661

PA-IAA [24]

AADB - 0.541 0.285 0.729

EVA 0.429 - 0.295 0.640

AVA 0.527 0.552 - 0.655

PARA 0.670 0.692 0.352 -

Average 0.542 0.595 0.311 0.675

TANet [12]

AADB - 0.602 0.468 0.771

EVA 0.486 - 0.546 0.711

AVA 0.328 0.512 - 0.471

PARA 0.674 0.669 0.587 -

Average 0.496 0.594 0.534 0.651

TAVAR

AADB - 0.587 0.519 0.763

EVA 0.489 - 0.570 0.728

AVA 0.480 0.546 - 0.652

PARA 0.688 0.723 0.644 -

Average 0.552 0.619 0.578 0.714

Joint training 0.711 0.746 0.697 0.770

fast adapt to IAA task with unknown theme types. (2) The
proposed TAVAR model performs significantly better than
these backbone networks on all themes of both databases.
Moreover, on the EVA database, the performance gain of
TAVAR using three backbone networks is higher than PARA
database, which proves that our proposed theme-aware IAA
framework has a more significant improvement on small-
scale database. (3) On both databases, TAVAR using Swin
Transformer can achieve the best performance and the largest
performance gain. Overall, the proposed TAVAR model has
good generalization performance and can consistently improve
the generalization performance of backbone networks in the
proposed theme-aware IAA framework.

Cross Database Evaluation. Further, we conduct cross-
database evaluation to verify the generalization of the proposed
TAVAR model on the AADB [16], EVA [39], AVA [40] and
PARA [41] databases. In this experiment, we train TAVAR on
one database and test it on other databases without doing any
fine-tuning. For comparison, we select several top-performing
deep IAA models with open source codes, and perform the
experiments under the same setting. In addition, as proven
in [58], joint training is a promising solution to enhance

the model generalization performance. We introduce joint
training into our experiments to explore its effectiveness for
the proposed TAVAR model. The comparison results in terms
of SRCC are summarized in Table V. From the experimental
results, we can observe that the average cross-database results
of the proposed TAVAR outperform other IAA models by
a large margin on all databases. Especially when the model
is trained on PARA database, the cross-database results are
already better than the intra-database performance of many
existing IAA models. In addition, experimental results demon-
strate that joint training can further improve the generalization
performance of the proposed TAVAR. These experimental
results further demonstrate that the proposed TAVAR can be
quickly generalized to other target databases without doing any
fine-tuning, which is highly desired in real-world applications.

E. Ablation Study

Impact of Aesthetics Network: In this work, the aesthetic
network is used to extract general aesthetic features, and the
proposed bilevel reasoning framework is able to leverage the
theme-aware visual attribute for enhancing the performance of
the aesthetic network. To verify the effectiveness of bilevel
reasoning framework for different aesthetics networks, we
conduct an ablation experiment. Specifically, we first directly
adopt six popular backbone networks to train and test on the
AADB [16], EVA [39], AVA [40] and PARA [41] databases,
respectively. These backbone networks include EfficientNet-
b0 [56], Mobilenet-v3 [55], ResNet-50 [34], DenseNet-121
[57], DeiT [59] and Swin Transformer [38], which are all pre-
trained on ImageNet. Then, we embed them into the proposed
TAVAR to conduct comparison experiments respectively. The
comparison results are given in Table VI.

From Table VI, it is observed that TAVAR is superior to
these baseline models by a large margin on all databases.
Specifically, for EfficientNet-b0 [56], our framework has the
highest performance gains of 2.8% (PLCC) and 2.1% (SRCC),
where average gains of 1.9% (PLCC) and 1.6% (SRCC) are
obtained on all databases. For Mobilenet-v3 [55], TAVAR
achieves the biggest performance gains of 2.1% (PLCC) and
2.2% (SRCC), while the average gains are 1.9% (PLCC) and
1.7% (SRCC). For ResNet-50 [34], TAVAR has the highest
performance gains of 3.6% (PLCC) and 3.1% (SRCC), where
average performance gains of 2.8% (PLCC) and 2.4% (SRCC)
are obtained. For DenseNet-121 [57], TAVAR achieves the
biggest performance gains of 3.4% (PLCC) and 3.3% (SRCC),
while the average gains are 2.4% (PLCC) and 2.3% (SRCC).
For DeiT [59], our TAVAR has the highest performance gains
of 4.7% (PLCC) and 4.1% (SRCC), where average gains of
3.5% (PLCC) and 2.8% (SRCC) are obtained on all databas-
es. Using Swin Transformer [38], TAVAR achieves the best
experimental results while obtaining the highest performance
gains of 4.5% (PLCC) and 3.9% (SRCC) and the average
performance gains of 3.3% (PLCC) and 3.5% (SRCC). These
results demonstrate that the proposed bilevel reasoning frame-
work can effectively adapt to different backbone networks for
the IAA task and consistently improve model performance.
Even with the lightweight EfficientNet-b0 [56] model, our
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TABLE VI
PERFORMANCES OF TAVAR USING VARIOUS BACKBONE NETWORKS ON THE AADB [16], EVA [39], AVA [40] AND PARA [41] DATABASES.

Model
AADB EVA AVA PARA Average

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

EfficientNet-b0 [56] 0.706 0.707 0.725 0.719 0.661 0.654 0.906 0.864 0.750 0.736

TAVAR 0.734 0.728 0.743 0.733 0.687 0.673 0.913 0.873 0.769 0.752

Gain 2.8% ↑ 2.1% ↑ 1.8% ↑ 1.4% ↑ 2.6% ↑ 1.9% ↑ 0.7% ↑ 0.9% ↑ 1.9% ↑ 1.6% ↑

Mobilenet-v3 [55] 0.718 0.716 0.750 0.742 0.659 0.652 0.902 0.861 0.757 0.743

TAVAR 0.738 0.733 0.771 0.764 0.679 0.665 0.915 0.876 0.776 0.760

Gain 2.0% ↑ 1.7% ↑ 2.1% ↑ 2.2% ↑ 2.0% ↑ 1.3% ↑ 1.3% ↑ 1.5% ↑ 1.9% ↑ 1.7% ↑

ResNet-50 [34] 0.704 0.703 0.756 0.743 0.667 0.656 0.906 0.870 0.758 0.743

TAVAR 0.736 0.730 0.792 0.771 0.694 0.687 0.920 0.881 0.786 0.767

Gain 3.2% ↑ 2.7% ↑ 3.6% ↑ 2.8% ↑ 2.7% ↑ 3.1% ↑ 1.4% ↑ 1.1% ↑ 2.8% ↑ 2.4% ↑

DenseNet-121 [57] 0.708 0.703 0.746 0.722 0.670 0.655 0.909 0.872 0.758 0.738

TAVAR 0.742 0.736 0.776 0.751 0.689 0.676 0.919 0.879 0.782 0.761

Gain 3.4% ↑ 3.3% ↑ 3.0% ↑ 2.9% ↑ 1.9% ↑ 2.1% ↑ 1.0% ↑ 0.7% ↑ 2.4% ↑ 2.3% ↑

DeiT [56] 0.721 0.723 0.751 0.739 0.661 0.652 0.911 0.876 0.761 0.748

TAVAR 0.754 0.748 0.798 0.780 0.705 0.689 0.926 0.886 0.796 0.776

Gain 3.3% ↑ 2.5% ↑ 4.7% ↑ 4.1% ↑ 4.4% ↑ 3.7% ↑ 1.5% ↑ 1.0% ↑ 3.5% ↑ 2.8% ↑

Swin Transformer [38] 0.731 0.730 0.772 0.763 0.691 0.686 0.920 0.880 0.779 0.765

TAVAR 0.761 0.763 0.810 0.799 0.736 0.725 0.940 0.911 0.812 0.800

Gain 3.0% ↑ 3.3% ↑ 3.8% ↑ 3.6% ↑ 4.5% ↑ 3.9% ↑ 2.0% ↑ 3.1% ↑ 3.3% ↑ 3.5% ↑
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Fig. 4. Ablation analysis on different model components on the AADB [16], EVA [39], AVA [40] and PARA [41] databases.

proposed model still achieves very encouraging performance.
This further demonstrates the effectiveness of the proposed
theme-aware visual attribute reasoning framework.

Impact of Model Components: To explore the relative
contributions of different components of the proposed TAVAR
model, ablation studies are further conducted. In the exper-
iment, we first evaluate the effectiveness of visual attribute
and theme features extracted from the pre-trained feature
extractors (denoted as ATF), where we use a FC layer directly
to predict the aesthetic quality score. Then, we add the
proposed ATG module to infer the aesthetic quality of the
image by mining the relationship between visual attributes and
theme category (denoted as ATF+ATG). Finally, we further
introduce the proposed AAG module to mine the relationship
between theme-aware visual attribute features and general
aesthetic features, producing the full TAVAR model (denoted
as ATF+ATG+AAG). The experimental results are shown in

Fig. 4. It is known from Fig. 4 that the attribute and theme
features (ATF) achieve very encouraging results on all the
databases, which indicates that the extracted attribute and
theme features can effectively describe the image aesthetic
quality. In addition, when the ATG is combined to mine the
relationship between image theme and visual attribute, the
performance further improves. This demonstrates that ATG
is advantageous over the commonly used FC pooling. Finally,
the proposed TAVAR consisting of all components achieves
the best performance. These results demonstrate the necessity
and reasonability of integrating all components for reasoning
the image aesthetic score.

F. Effectiveness of GCN-based Bilevel Reasoning

In this work, we propose to build the GCN-based theme-
aware visual attribute reasoning for handling the IAA task.
To investigate the effectiveness of the proposed GCN-based
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(b) Dominant aesthetic attribute: Interesting content (a) Dominant aesthetic attribute: Color harmony 

(d) Dominant aesthetic attribute: Depth of field (c) Dominant aesthetic attribute: Vivid color 

(f) Dominant aesthetic attribute: Object emphasis (e) Dominant aesthetic attribute: Good lighting 

Attribute distribution Attribute distribution
GT Pre.GT Pre.

Fig. 5. Visual examples of the proposed TAVAR model on six testing images with different dominant aesthetic attributes. IC: Interesting Content; OE: Object
Emphasis; VC: Vivid Color; DoF: Depth of Field; CH: Color Harmony; GL: Good Lighting; GT: Ground Truth; Pre.: Prediction. (Best viewed in color and
zoomed in.)

TABLE VII
PERFORMANCE OF THE PROPOSED MODEL USING DIFFERENT FEATURE FUSING BLOCKS ON THE AADB [16], EVA [39], AVA [40] AND PARA [41]

DATABASES.

Model
AADB EVA AVA PARA

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

Concatenation [60] 0.759 0.751 0.803 0.778 0.720 0.704 0.937 0.905
Point-wise Addition [34] 0.761 0.757 0.802 0.783 0.719 0.702 0.934 0.901
Self-attention [37] 0.761 0.753 0.798 0.779 0.725 0.709 0.936 0.908
Bilevel GCN [30] 0.763 0.761 0.810 0.799 0.736 0.725 0.940 0.911

TABLE VIII
PERFORMANCES OF THE PROPOSED VISUAL ATTRIBUTE ANALYSIS NETWORK (VAAN) AND THEME UNDERSTANDING NETWORK (TUN) USING

DIFFERENT ACTIVATION FUNCTIONS. IC: INTERESTING CONTENT; OE: OBJECT EMPHASIS; VC: VIVID COLOR; DOF: DEPTH OF FIELD; CH: COLOR
HARMONY; GL: GOOD LIGHTING; TR: THEME RECOGNITION.

Model
OE VC DoF CH GL IC TR

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC ACC (%)

using ReLU 0.677 0.681 0.698 0.703 0.707 0.512 0.541 0.529 0.534 0.497 0.616 0.611 84.8
using PReLU 0.687 0.691 0.704 0.712 0.718 0.513 0.551 0.543 0.545 0.515 0.614 0.608 85.1

bilevel reasoning, we further conduct comparison experiments.
Specifically, we compare three popular feature fusion strate-
gies including Concatenation [60], Point-wise Addition [34]
and Self-attention Fusion [37] by replacing the proposed GCN-
based bilevel reasoning. For fair comparisons, all comparison
experiments are conducted using the same experimental setting
and test on all the four databases including AADB [16], EVA
[39], AVA [40] and PARA [41]. The experimental results in
terms of PLCC/SRCC values are listed in Table VII. From the
experimental results, it can be seen that the proposed model
with GCN-based bilevel reasoning is superior to other feature
fusing strategies on all databases, which further demonstrates
the reasonability of using GCN to mine the interaction between
image theme and visual attributes.

G. Effectiveness of Activation Function

Considering that the Parametric Rectified Linear Unit (PRe-
LU) [36] can improve the performance of deep model and
reduce the risk of overfitting compared with ReLU, we intro-
duce PReLU as activation function in MLPs of the proposed
visual attribute analysis network and the theme understanding
network. To verify the effectiveness of PReLU, we further
conduct comparison experiment by replacing PReLU with
ReLU in VAAN and TUN. For fair comparison, both PReLU
and ReLU are trained using the same experimental setting.
The results are summarized in Table VIII, where the best
results are marked in boldface. From the results, among the
six attribute prediction tasks in VAAN, five tasks using PReLU
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achieve better performance than using ReLU. For the theme
classification task, PReLU improves the accuracy by 0.3%
compared with ReLU. The experimental results demonstrate
that the performance of our model using PReLU as activation
function is significantly better than that using ReLU.

H. Model Interpretation

To intuitively demonstrate the explainability of the proposed
TAVAR model, we perform a visual experiment on six high-
aesthetics images, which are characterized by different dom-
inant visual attributes. Fig. 5 shows the testing images and
activation maps via the commonly used CAM [61] method,
as well as the corresponding predicted visual attributes and
ground truth values.

From Fig. 5, we have the following observations. (1) The
appearances of all activation maps are consistent with the
position of attention when people judge image aesthetics. For
example, the dominant aesthetic attribute of Fig. 5 (a) is color
harmony, where the green grass in the near vicinity and the
cyan hills in the distance make the image look beautiful. The
activation map corresponds well to these regions. In Fig. 5 (b),
the local region of the surfer looks interesting, where people
will pay more attention when judging the aesthetic quality,
and the activation map also covers this region. The dominant
aesthetic attribute of Fig. 5 (c) is vivid color, the activation map
also shows higher attention values at the car region, which is of
prime importance for aesthetic judgment. Similar results can
be found for the other images. (2) The proposed TAVAR model
can accurately predict the aesthetic attributes of the image,
which are very close to the ground truth values. From these
visual results, we know that TAVAR can capture the regions
with dominant aesthetic attribute, which is consistent with the
human perception. The possible reason is that the pipeline of
the proposed TAVAR model simulates the process of human
perception in image aesthetics, in which the pre-trained visual
attribute analysis network and theme understanding network
allow the model to adaptively focus on the regions with
the dominant aesthetic attribute according to different image
themes. By bilevel aesthetic reasoning, the proposed model can
produce the final aesthetic prediction, which is more consistent
with the human judgment on image aesthetics. In addition, the
predicted visual attributes can provide reasonable explanations
on why a particular aesthetic quality score is predicted, which
is very useful in real-world applications.

I. Computational Efficiency

For the IAA task, computational complexity is also of
great importance in real-world applications. To evaluate the
computational efficiency of the proposed TAVAR model, we
compare the average processing speed of TAVAR with several
popular deep IAA models on AVA database. For fair com-
parison, all tests are implemented on the same computer with
Intel Core i7-9700K CPU @ 3.60GHz, and NVIDIA GeForce
RTX 3090 24G GPU and the same deep learning environment
with Pytorch and Python 3.7. Moreover, we use the default
setting of the source codes without any modification. The
average images-per-second is calculated for evaluating the

Processing speed (images-per-second)

Fig. 6. Average processing speed of different IAA models.

computational efficiency of each model. Fig. 6 shows the
experimental results.

From Fig. 6, it is observed that the proposed TAVAR
model can process more than 212 images per second, which
demonstrates the potential of TAVAR in practical applications.
Since the proposed TAVAR contains a visual attribute analysis
network and a theme understanding network, they would
take more time. Therefore, TAVAR is slower than TANet.
However, the visual attribute analysis network and the theme
understanding network not only allow TAVAR to accurately
predict aesthetic scores, but also make it interpretable.

V. CONCLUSION

In this paper, we have presented a new IAA model based on
theme-aware visual attribute reasoning, dubbed TAVAR, which
simulates the aesthetic perception process of human using a
bilevel reasoning framework. Specifically, to investigate the
coupled relationship between image theme and visual attribute,
we propose the first level attribute-theme graph (ATG), which
enables the model to more effectively capture dominant visual
attributes according to different image themes, producing the
theme-aware visual attribute features. Further, the second level
attribute-aesthetics graph (AAG) is built to model the com-
plementary relationship between visual attribute features and
aesthetic features in determining the overall image aesthetic
quality. We have demonstrated the superior performance of
TAVAR on four public IAA databases. Furthermore, visual
analysis has shown that the proposed TAVAR model can pro-
vide the reasons for aesthetic decision based on the predicted
visual attributes, which makes TAVAR explainable.
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