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Abstract—With the increasing prevalence of free-viewpoint
video applications, virtual view synthesis has attracted extensive
attention. In view synthesis, a new viewpoint is generated from
the input color and depth images with a depth-image-based
rendering (DIBR) algorithm. Current quality evaluation models
for view synthesis typically operate on the synthesized images,
i.e. after the DIBR process, which is computationally expensive.
So a natural question is that can we infer the quality of DIBR-
based synthesized images using the input color and depth images
directly without performing the intricate DIBR operation. With
this motivation, this paper presents a no-reference image quality
prediction model for view synthesis via COlor-Depth Image
Fusion, dubbed CODIF, where the actual DIBR is not needed.
First, object boundary regions are detected from the color image,
and a Wavelet-based image fusion method is proposed to imitate
the interaction between color and depth images during the DIBR
process. Then statistical features of the interactional regions
and natural regions are extracted from the fused color-depth
image to portray the influences of distortions in color/depth
images on the quality of synthesized views. Finally, all statistical
features are utilized to learn the quality prediction model for
view synthesis. Extensive experiments on public view synthesis
databases demonstrate the advantages of the proposed metric in
predicting the quality of view synthesis, and it even suppresses
the state-of-the-art post-DIBR view synthesis quality metrics.

Index Terms—View synthesis, DIBR, color-depth fusion, inter-
actional region, quality prediction.

I. INTRODUCTION

NOWADAYS, view synthesis has attracted extensive atten-
tion owing to the increasing prevalence of free-viewpoint

video applications [1]–[4]. In virtual view synthesis, a new
viewpoint is generated using the input color and depth images

L. Li is with the Guangzhou Institute of Technology, Xidian University,
Guangzhou 510555, China, and also with the Pazhou Lab, Guangzhou 510330,
China (e-mail: ldli@xidian.edu.cn).

Y. Huang is with the School of Information and Control Engineering,
China University of Mining and Technology, Xuzhou 221116, China (e-mail:
huangyipo@hotmail.com).

J. Wu is with the School of Artificial Intelligence, Xidian University, Xi’an
710071, China (e-mail: jinjian.wu@mail.xidian.edu.cn).

K. Gu is with Beijing Key Laboratory of Computational Intelligence and
Intelligent System, Faculty of Information Technology, Beijing University of
Technology, Beijing 100124, China (e-mail: guke.doctor@gmail.com).

Y. Fang is with the School of Information Management, Jiangxi Univer-
sity of Finance and Economics, Nanchang, Jiangxi 330032, China (e-mail:
fa0001ng@e.ntu.edu.sg).

This work was supported in part by the National Natural Science Foundation
of China under Grants 61771473, 61991451 and 61379143, the Key Project
of Shaanxi Provincial Department of Education (Collaborative Innovation
Center) under Grant 20JY024, the Science and Technology Plan of Xi’an
under Grant 20191122015KYPT011JC013, the Natural Science Foundation of
Jiangsu Province under Grant BK20181354, and the Six Talent Peaks High-
level Talents in Jiangsu Province under Grant XYDXX-063. (Corresponding
author: Yipo Huang.)

jointly, where depth-image-based rendering (DIBR) is com-
monly used [5], [6]. In practice, various distortions could be
introduced into the color and depth images, from acquisition,
compression to transmission, which in turn impair the percep-
tual quality of the synthesized views. Quality assessment for
view synthesis is of paramount importance in joint color/depth
image coding and bit allocation [7]. Without an effective view
synthesis quality index, benchmarking and optimization of
DIBR algorithms is also troublesome [8].

In the literature, a mass of image quality assessment (IQA)
methods have been proposed. Based on the availability of high-
quality pristine image, the existing IQA models can be cate-
gorized into full-reference (FR), reduced-reference (RR) and
no-reference (NR) [9]–[12]. Representative FR-IQA models
include Structural Similarity (SSIM) [13], Feature Similarity
(FSIM) [14] and Visual Information Fidelity (VIF) [15], which
utilize both the test image and the corresponding perfect-
quality pristine image to calculate the quality score. RR-IQA
metrics utilize side information of the reference images, typi-
cally through feature extraction, to achieve quality evaluation
[16], [17]. In contrast, NR-IQA models calculate image quality
score based on the distorted image directly. Popular NR-IQA
metrics include the Blind/Referenceless Image Spatial Quality
Evaluator (BRISQUE) [18], Natural Image Quality Evaluator
(NIQE) [19], Integrated Local NIQE (IL-NIQE) [20] and M3
[21], just to name a few. The above IQA models have achieved
significant success in evaluating the quality of natural scene
images. However, they are usually limited when used for view
synthesis [8]. This is mainly because that distortions in view
synthesis are much more complicated. Specifically, in addition
to the common distortions in natural scenes, distortions of the
input depth images and the DIBR operation easily introduce
local geometric distortions to the synthesized views, which
cannot be handled by traditional IQA metrics [8].

In this paper, we present a new no-reference quality predic-
tion model for view synthesis based on COlor-Depth Image
Fusion, called CODIF. The underlying idea is to imitate the
interactions between color and depth images during the DIBR
process by devising an effective Wavelet-based color-depth
image fusion approach. In addition, taking into account the
different functional mechanisms of color and depth images in
view synthesis, interactional regions and natural regions are
defined based on the fused color-depth image, and different
sets of synthesis-aware features are devised for predicting the
degradations in view synthesis. The support vector regression
(SVR) is adopted for building the final quality prediction mod-
el. The advantage of the proposed metric is also demonstrated
based on extensive experiments and comparisons with both
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pre-DIBR and post-DIBR view synthesis quality models. The
contributions of our work can be summarized as follows.
• We propose a novel NR quality prediction model for

view synthesis, which can infer the quality of synthesized
images using the input color and depth images directly without
performing the computationally expensive DIBR process.
• A Wavelet-based color-depth image fusion approach is

proposed to imitate the interactions between color and depth
images in the DIBR process.
• We propose to predict the view synthesis quality based

on the fused color-depth image from interactional regions and
natural regions, with the purpose to portray the two categories
of distortions in view synthesis. Furthermore, a Tchebichef
moment-based statistical feature is devised to measure the
geometric distortions in the interactional regions.

II. RELATED WORK

In the past decade, several quality metrics for view synthesis
have been proposed. Battisti et al. [22] proposed the 3D Syn-
thesized view Image quality Metric (3DSwIM) by analyzing
the similarities of statistical features between the distorted and
reference synthesized images in the Wavelet domain. In [23],
[24], the Morphological Wavelet PSNR (MW-PSNR) and Mor-
phological Pyramid PSNR (MP-PSNR) metrics were proposed
based on the Morphological Wavelet and Morphological Pyra-
mids representations, respectively. In addition, their reduced
versions, i.e. RMW-PSNR [23] and RMP-PSNR [25], were
also proposed by discarding the coarse-scale subbands. Li
et al. [8] employed the SIFT-flow-based geometric warping
to localize the disoccluded areas and evaluated the local
geometric distortions from the detected disoccluded areas.
Tian et al. [26] proposed the NIQSV metric by quantifying the
distortions in luminance, contrast and saturation based on the
morphological operations. Further, they proposed to measure
the blur regions, holes and the stretching distortions, producing
the NIQSV+ metric [27]. Gu et al. [28] first employed the
autoregression (AR) model to generate a reconstruction image,
based on which the error between the AR-reconstructed image
and the corresponding DIBR-synthesized image was quantified
to measure the geometric distortions. In [29], a No-Reference
Morphological Wavelet with Threshold (NR-MWT) metric
was proposed to measure the perceptual quality of synthesized
images and videos. First, the morphological Wavelet was
adopted for extracting the high-frequency visual content. Then
a threshold was introduced to portray the most significant
regions in the high-frequency Wavelet transform. Finally,
the quality score was generated by only using coefficients
above the threshold. Jakhetiya et al. [30] measured the visual
quality of synthesized images, where geometric and structural
distortions were highlighted based on median filtering. In [31],
a novel method was proposed with Multiscale Natural Scene
Statistical analysis (MNSS). First, the self similarity-based
model was employed for measuring the DIBR-introduced
geometric distortions. Then the degradations in main structures
were also evaluated by the proposed statistical model. The
final quality score was calculated by integrating them using
a straightforward multiplication. Zhou et al. [5] addressed a

blind view synthesis quality index by using the Difference-
of-Gaussian feature to measure edge degradation and textural
unnaturalness. More recently, Wang et al. [32] decomposed the
DIBR-synthesized images using the discrete Wavelet transfor-
m. Then the geometric distortions were captured using the
edge similarities between the binarized low-frequency and
high-frequency subbands. In addition, the sharpness of the
DIBR-synthesized image was evaluated by the log-energies of
wavelet subbands. The final quality score of the synthesized
image was calculated by integrating the geometric distortions
and overall sharpness.

The above view synthesis quality metrics follow the same
pipeline to perform quality assessment using the synthesized
images, typically with the help of color images of the o-
riginal viewpoint. In practice, the DIBR process consists of
warping and rendering operations, which are computationally
expensive. In addition, evaluating the view synthesis quality
using both the DIBR-synthesized image and the original color
image typically needs to determine the dense correspondence
between the two images, e.g. SIFT-flow-based approach in [8],
so that the geometric distortions can be accurately located.
This also incurs heavy computational burden. Therefore, a
straightforward question is that can we develop an efficient
model to predict the quality of view synthesis without per-
forming the complicated DIBR operation, i.e. evaluating using
the input color and depth images directly. By this means,
view synthesis systems can be more flexible, considering that
if the input color/depth images cannot generate satisfactory
synthesized viewpoint (by prediction), their quality can be
adjusted before sending to the time-consuming DIBR process.

To the best of our knowledge, only two relevant approaches
have been reported towards blind pre-DIBR quality assessment
of view synthesis using color and depth images [33], [34].
Wang et al. [33] proposed a novel FR quality model to
predict the quality of synthesized views based on content-
aware weighting of both color and depth images. The well-
known SSIM [13] metric was utilized to calculate two quality
indication maps between the degraded color/depth images and
the corresponding reference images. An information content
weighting map was also calculated by normalizing the depth
similarity map using the original color image. Finally, an
overall quality measure was generated by combining the color
and depth quality maps. Shao et al. [34] reported a high-
efficiency view synthesis quality prediction (HEVSQP) index
using sparse representation of color and depth images. They
first characterized the relationship between the synthesized
image and the input color/depth distortions. Then, color-
involved view synthesis quality prediction (CI-VSQP) and
depth-involved view synthesis quality prediction (DI-VSQP)
were achieved based on sparse representation features. Finally,
an overall quality score was generated by performing a pooling
between CI-VSQP and DI-VSQP. The effectiveness of the
HEVSQP metric was verified based on experiments in a
synthesized video quality database.
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III. PROPOSED PRE-DIBR QUALITY PREDICTION MODEL

We first analyze the distortion characteristics in view syn-
thesis. Then we detail the proposed view synthesis quality
prediction model, including color-depth image fusion, statis-
tical feature extraction from interactional and natural regions,
and the regression-based quality model training.

A. Distortion Analysis in View Synthesis

In DIBR-based view synthesis, both the conventional distor-
tions and geometric distortions are present in the synthesized
images, which are caused by the distorted color and depth
images [35]–[37]. In Fig. 1, we show two images synthesized
with different combinations of input color and depth images,
together with the SSIM [13] maps between the synthesized
images and the corresponding pristine images. In the SSIM
maps, darker region indicates heavier distortion. Fig. 1(c)
shows the SSIM map of image (a), which is synthesized
using distorted color image and undistorted depth image. Fig.
1(d) shows the SSIM map of image (b), which is synthesized
using undistorted color image and distorted depth image. By
comparing the two SSIM maps, it can be easily observed
that the synthesis distortions caused by distorted color image
mainly occur in natural regions of the synthesized image. In
contrast, the synthesis distortions caused by distorted depth
image mainly occur around object boundaries. This is because
that distortions in color image will be straightforwardly trans-
ferred to the synthesized image. On the contrary, depth images
are typically employed to assist the warping operation in
DIBR, which typically influences object boundaries, because
object boundaries in depth images represent different distances
from the object to the camera [38]. In other words, distortions
in depth images usually cause geometric distortions around
object boundaries in the synthesized image, which is mainly
because of the edge misalignment between color image and
depth image in the DIBR process.

Inspired by the above observations, this paper presents a
NR quality prediction model for view synthesis based on
color-depth image fusion. Our objective is to predict the
quality of DIBR-based view synthesis blindly based on the
input color and depth images directly, without performing the
computationally expensive DIBR operation. Fig. 2 shows a
schematic diagram of the proposed metric.

B. Color-Depth Image Fusion

The DIBR process consists of a warping stage and a
rendering stage. During warping, the input color image is first
mapped into the 3D space under the guidance of the corre-
sponding depth image. Then an inverse mapping is performed
to obtain the target view. Rendering is mainly to fill the holes,
a.k.a. disoccluded regions, introduced in the warping process,
based on which the synthesized views can be obtained [8]. In
this process, color and depth images interact to generate the
synthesized view. In fact, the DIBR process can be viewed as
a process to fuse the input color and depth information for
generating the synthesized view. From this perspective, given
a specific DIBR algorithm, degradations in the input color and

Fig. 1: SSIM maps of the synthesized images using different
combinations of color and depth images. (a): synthesized
image using distorted color image and undistorted depth
image; (b): synthesized image using undistorted color image
and distorted depth image; (c): SSIM map of image (a); (d):
SSIM map of image (b).

depth images determines the final synthesized image quality.
This motivates us to imitate the interactional mechanism
between color and depth images by proposing a color-depth
fusion approach, and further to predict the quality of view
synthesis using the fused color-depth image.

Generally, edges in color images fall into different cate-
gories, such as object boundaries, shadows and color patterns
[39]–[41]. By contrast, edges in depth images only represent
object boundaries, because depth map measures the distance
between an object and the camera. Therefore, depth edges
constitute a subset of color image edges, and this subset of
edges will interact between color and depth in the DIBR
process. Ideally, depth and color edges should coexist and they
should be aligned exactly around object boundaries. In other
words, for high-quality color and depth images, the location of
edges is expected to be coincident in object boundary regions.
As a result, if we fuse the edge information of the high-quality
color and depth images around object boundary regions, the
structure of the fused edge should be consistent with the real
object edge. On the contrary, if color and depth images are
subject to distortions, there will be misalignment between the
fused color-depth edges and the real object edges, which will
in turn degrade the quality of the synthesized view. Therefore,
color and depth images can be fused to imitate their mutual
interactions during the actual DIBR process, and conversely
the fused color-depth image can be utilized to predict the
quality of the synthesized image with no need of the actual
DIBR operation. This also illustrates our design philosophy.

Towards the above goal, we first propose a simple and
effective Wavelet-based color-depth image fusion approach.
This is mainly inspired by the fact that image edges are mainly
present as detail information and the high-frequency coef-
ficients of Discrete Wavelet Transform (DWT) are efficient
in portraying image details [42]. Furthermore, DWT has the
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Fig. 2: Diagram of the proposed pre-DIBR quality prediction model for view synthesis.

advantage of multi-scale geometric analysis, which is similar
to the hierarchical property Human Visual System (HVS) [43].
These merits make DWT an ideal choice for image fusion
[44]–[46]. In this work, the Haar Wavelet is adopted [47].

As aforementioned, the interaction between color and depth
images occurs around object boundary regions. Therefore,
we first resort to an object boundary detection approach for
locating these regions. For clarity, we use interactional regions
(IRs) to denote the object boundary regions hereafter, while the
other regions outside the IRs are called natural regions (NRs).
It is worth to emphasize that the interaction between color and
depth distortions mainly destroys the edges of salient objects,
so traditional edge detection methods are not applicable here.
The reason is that traditional edge detection methods tends to
detect too many edges and many of them are textures inside
objects [48], which are not useful in our problem. In this work,
we employ the Holistically-nested Edge Detection (HED)
model [49] for accomplishing this task, which is pre-trained
on the BSDS database [50] and can achieve very competitive
performance in salient object boundary detection. Since the
object boundary regions, i.e. IRs, can be fully covered by
the edges detected using the HED model, the HED edges are
directly used to locate the interactional regions. Fig. 3 shows
an example of object boundary detection and interactional
region localization. It can be seen from the figure that the
detected regions are all located at salient object boundaries,
which are critical for view synthesis. In the proposed method,
these regions are used to guide the subsequent color-depth
image fusion.

With the object boundary regions, the proposed color-
depth image fusion approach operates as follows. First, the
input color and depth images are both decomposed by two-
level Wavelet transform, producing seven subbands including
six high-frequency subbands and one low-frequency subband.
Since low-frequency subband typically represents the average
characteristic of an image and high-frequency subband rep-
resents image detail information, we only use high-frequency
subbands of the color and depth images to conduct the fusion,
where the IRs mask (denoted as IIRs) is used as guide
information. Specifically, the high-frequency coefficients of
the input color and depth images (denoted as SLH , SHL and

SHH ) are averaged to obtain the high-frequency coefficients
of the fused image, which is achieved by

SFLHn(i, j) =

{
SCLHn (i,j)+SDLHn (i,j)

2 , IIRs(i, j) = 1

SCLHn(i, j), IIRs(i, j) = 0
(1)

SFHLn(i, j) =

{
SCHLn (i,j)+SDHLn (i,j)

2 , IIRs(i, j) = 1

SCHLn(i, j), IIRs(i, j) = 0
(2)

SFHHn(i, j) =

{
SCHHn (i,j)+SDHHn (i,j)

2 , IIRs(i, j) = 1

SCHHn(i, j), IIRs(i, j) = 0
(3)

where SF denotes the fused high-frequency subband, SC

represents the high-frequency subband of the color image,
SD denotes the high-frequency subband of the depth image,
and n ∈ [1, 2] denotes the decomposition level in the Wavelet
transform.

After fusing the high-frequency DWT coefficients, the fused
color-depth image can be easily obtained from the fused
high-frequency subbands and the low-frequency subband of
the color image by performing an inverse DWT. To show
the effectiveness of the proposed color-depth image fusion
approach in imitating the interactions between color and depth
images during DIBR, we show two examples in Fig. 4, where
the color-depth fused images and the corresponding DIBR-
synthesized images are shown together. Since distortions in
color input are typically transferred to the DIBR-synthesized
view directly, we only show examples where undistorted color
image and distorted depth image are used in the DIBR process.
In this case, the synthesis distortions are mainly located at
object boundaries. By comparing the object boundary regions
in the fused color-depth image and the corresponding DIBR-
synthesized image in Fig. 4, it is easily observed that the
distortion characteristics in the two images are quite similar.
This confirms the effectiveness of the proposed color-depth
image fusion approach.
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Fig. 3: Illustration of object boundary detection and interactional region localization. (a) color image, (b) detected object
boundaries, and (c) interactional regions.

Fig. 4: Distortion characteristics in the fused color-depth image
and the actual DIBR-synthesized image.

C. Statistical Feature Extraction

Following the color-depth image fusion process, we know
that the interactional regions (IRs) of the fused image are
generated by combining the color and depth images in object
boundary regions, while the natural regions (NRs) maintain
the distortion characteristics of the input color image. To
be specific, distortions in interactional regions are mainly
geometric distortions, while distortions in natural regions are
mainly common distortions. For this reason, we propose to
apply two different feature extraction strategies for IRs and
NRs of the fused color-depth image.

For IRs, distortions of the fused image are mainly present
as edge degradation, which are related to object shapes. It
has been shown that Tchebichef moments are effective in
portraying shapes in an image [9]. In this work, the Tchebichef
moment is used to measure the edge degradation in the interac-
tional regions of the fused color-depth image. In addition, the
moment-based features are calculated in the gradient image,
since gradient domain is more effective for shape description
[51]. Therefore, for interactional regions IIRs, the gradient

magnitude (GM) image IGM is first calculated:

IGM =
|Gx|+ |Gy|

2
, (4)

Gx = [−1 0 1] ∗ IIRs, Gy = [−1 0 1]′ ∗ IIRs, (5)

where ∗ denotes the convolution operation and ′ is the trans-
pose operation.

Next, the GM image of the interactional regions is first
partitioned into equal-size blocks with K × K pixels. Then,
for the nth block, the Tchebichef moments from zero order to
the [(K − 1) + (K − 1)] order are computed as:

Tn =


t00 t01 · · · t0(K−1)

t10 t11 · · · t1(K−1)

...
...

. . .
...

t(K−1)0 t(K−1)1 · · · t(K−1)(K−1)

. (6)

Fig. 5 shows an example of the IRs and NRs of a color-depth
fused image, where image (d) further shows the histogram
distribution of Tchebichef moment coefficients (TMC) collect-
ed from all blocks in IRs. To extract quality-aware features,
the Asymmetric Generalized Gaussian Distribution (AGGD) is
adopted to fit the distribution of TMC coefficients [19], which
is defined by

f(x; θ, σ2
l , σ

2
r) =


θ

(βl+βr)Γ( 1
θ )
exp

(
−
(
−x
βr

)θ)
, x ≥ 0,

θ
(βl+βr)Γ( 1

θ )
exp

(
−
(
−x
βl

)θ)
, x < 0,

(7)

where θ donates the shape of the distribution, σ2
l , σ2

r donate
the left side and right side spreads of the TMC distribution
respectively, and Γ(·) is the gamma function:

Γ(a) =

∫ ∞
0

ta−1e−tdt. (8)

In addition to the above three features, the mean value is
also calculated:

µ = (σr − σl)
Γ( 2

θ )

Γ( 1
θ )
. (9)
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Fig. 5: Illustration of NRs and IRs as well as the corresponding distributions. (a) fused color-depth image; (b) IRs of image
(a); (c) NRs of image (a); (d) TMC distribution of image (b); (e): MSCN distribution of image (c).

Four parameters (θ, σ2
l , σ

2
r , µ) can be calculated from the

TMC (IRs) distributions, constituting the first set of quality-
aware features.

For NRs, as the distortions in the input color image will be
straightforwardly transferred to the synthesized images, the
natural scene statistics (NSS) features can be used for NRs. In
this work, the mean subtracted contrast normalized (MSCN)
coefficients are first calculated [52], and the distribution pa-
rameters are employed for measuring the distortions in NRs.

Given the natural regions INRs of the color-depth fused
image, the local divisive normalization at each pixel INRs(i, j)
is performed, which serves as decorrelation to the brightness
values of neighboring pixels. Then, the MSCN coefficients are
computed as:

Î =
INRs(i, j)− µ(i, j)

σ(i, j) + C
, (10)

where µ(i, j) and σ(i, j) denote the local mean and standard
deviation, which are further defined as [18]:

µ(i, j) =
K∑

k=−K

L∑
l=−L

ωk,lIk,l(i, j), (11)

σ(i, j) =

√√√√ K∑
k=−K

L∑
l=−L

ωk,l(Ik,l(i, j)− µ(i, j))2, (12)

where ω denotes the Gaussian function, and K = L = 3.
In Fig. 5(e), we show an example of the histogram distri-

butions of MSCN coefficients in the NRs of the color-depth

fused image (a). Similarly, we also employ the AGGD function
to fit the distribution of the MSCN coefficients, producing the
second set of quality-aware features.

It has been demonstrated that the human visual system
possesses the multi-scale characteristics when perceiving the
visual scenes [53]–[56]. To adapt to this property, in this work
the Gaussian low-pass filtering [57] is utilized to generate a
five-scale representation space of the fused image, and the
above two sets of features are extracted accordingly. Finally,
40 statistical features are extracted for each fused color-depth
image, including 20 IRs-TMC features and 20 NRs-MSCN
features.

Fig. 6 shows an example of fitted curves of AGGD functions
for IRs and NRs, where color/depth images are contaminated
by various distortions. From the figure, it is obvious that dif-
ferent distortions generate distributions with different shapes.
In accordance with the AGGD fitting curves, different sets
of parameters could be obtained. As a result, the statistical
features extracted in this paper are sensitive to distortion
characteristics, which in turn confirms the validity of the
proposed features.

D. Quality Prediction

In order to map the above statistical features into an overall
score for predicting the quality of view synthesis, we employ
the SVR [58] to learn the quality prediction model. In real-
world applications, given a new pair of input color and depth
images, the trained SVR model can be utilized to predict the
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Fig. 6: Fitted curves of TMC distribution in interactional regions and MSCN distribution in natural regions of fused color-depth
image with different types of distortions. For simplicity, color and depth images are subject to the same type of distortion in
this example.

quality score of the target synthesized image. In this process,
the actual DIBR operation is not performed, and the quality
prediction is achieved solely using the distorted color and
depth images directly in a blind (no-reference) manner. In this
work, the Radial Basis Function (RBF) [58] kernel is adopted
for training the SVR model.

IV. EXPERIMENTAL RESULTS

A. Evaluation Protocols

In this part, we perform a series of experiments to verify
the performance of the proposed quality prediction metric.
Two publicly available databases for view synthesis quality
evaluation are used, including MCL-3D [59] and IST [60].

MCL-3D [59]. This database consists of 684 synthesized
image pairs. Among them, 648 image pairs are generated by
the View Synthesis Reference Software (VSRS) [59] using the
color-depth image pairs. Six kinds of distortions are applied
to the input color and/or depth images, namely Gaussian blur,
JPEG compression, down-sampling blurring, additive white
noise, JPEG2000 and transmission error. Further, four different
distortion levels are applied for each distortion type. More-
over, there are three configurations for view synthesis in the
database, including 1) undistorted color image with distorted
depth image, 2) distorted color image with undistorted depth
image, and 3) distorted color image with distorted depth
image. In the proposed metric, we employ the input color-
depth image pairs to predict the quality of synthesized views,
so the Mean Opinion Score (MOS) of the synthesized image
is used as the ground truth of the input color-depth image pair.

IST database [60]. This database contains 180 synthesized
image pairs. Among them, 60 pairs are obtained based on the
VSRS algorithm [59], and the other 120 pairs are obtained
using the VSIM algorithm [61]. The input color and depth
images are both degraded by different degrees of compression
artifacts. Since the proposed metric is designed for quality
prediction of synthesized views using input color-depth im-
ages, the DIBR algorithm needs to be fixed during test. So we
conduct two sets of experiments respectively for the DIBR

algorithms VSRS and VSIM. Similarly, the MOS value of the
synthesized image is used as the ground truth of the input
color-depth image pair. Moreover, confidence intervals of the
individual MOS values are also provided in the database.

We adopt four widely used criteria for performance e-
valuation, including Pearson Linear Correlation Coefficient
(PLCC), Spearman Rank order Correlation Coefficient (S-
RCC), Kendalls Rank Correlation Coefficient (KRCC) and
Root Mean Square Error (RMSE). Further, considering the
uncertainty of the subjective scores, we also calculate the
epsilon-insensitive RMSE (RMSE*) using confidence intervals
on IST database. This criterion is recommended by ITU-T
P.1401 [62]. Since the MCL-3D database does not provide the
individual MOS values or confidence intervals, the correspond-
ing RMSE* values can not be calculated on this database.
Among the mentioned criteria, PLCC, RMSE and RMSE*
are used to evaluate the prediction accuracy, while SRCC and
KRCC are used to evaluate the prediction monotonicity. A
better quality metric should achieve higher SRCC, KRCC and
PLCC values, as well as lower RMSE and RMSE* values.
To compute PLCC, RMSE and RMSE*, the following five-
parameter nonlinear mapping is first performed:

f(x) = ξ1

(
0.5− 1

1 + eξ2(x−ξ3)

)
+ ξ4x+ ξ5, (13)

where x donates the prediction score, f(x) denotes the mapped
score, and ξi, i=1, 2, . . . , 5, are the fitting parameters.

B. Performance Evaluation

We compare the performance of the proposed CODIF
metric with the relevant state-of-the-arts. Four popular general-
purpose NR-IQA metrics are compared, including NIQE [19],
BRISQUE [18], IL-NIQE [20] and M3 [21]. The compared
quality metrics for synthesized images (post-DIBR) include
MW-PSNR [23], MP-PSNR [24], LOGS [8], SET [5], Ref.
[30] and NIQSV [26]. Furthermore, the pioneer pre-DIBR
quality index [33] is also compared. For the learning-based
quality metrics, 80% of the images are randomly chosen for
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TABLE I: Performances of view synthesis quality metrics on MCL-3D and IST databases.

Category Metric Type
VSRS on MCL-3D Database VSRS on IST Database VSIM on IST Database

PLCC SRCC KRCC RMSE PLCC SRCC KRCC RMSE RMSE* PLCC SRCC KRCC RMSE RMSE*

Post-DIBR

NIQE [19] GNR 0.7543 0.7104 0.5325 1.6980 0.6395 0.6202 0.4494 0.7472 0.5453 0.5836 0.5858 0.4122 0.7273 0.5359

BRISQUE [18] GNR 0.6944 0.6646 0.4679 1.8722 0.7454 0.7108 0.5426 0.5946 0.3985 0.6512 0.5877 0.4242 0.6208 0.4395

IL-NIQE [20] GNR 0.7155 0.6450 0.4684 1.7993 0.6131 0.5989 0.4517 0.7679 0.5764 0.3959 0.3792 0.2647 0.8225 0.5855

M3 [21] GNR 0.5610 0.4634 0.3177 2.0733 0.7129 0.7192 0.5496 0.6819 0.4281 0.6623 0.6120 0.4574 0.5937 0.4323

MW-PSNR [23] SRR 0.8012 0.8099 0.6063 1.5568 0.5722 0.5638 0.3891 0.7971 0.6011 0.6843 0.6772 0.4897 0.6532 0.4611

MP-PSNR [24] SRR 0.8169 0.8231 0.6206 1.5007 0.5520 0.5353 0.3675 0.8105 0.6198 0.7221 0.7271 0.5302 0.6196 0.4244

LOGS [8] SRR 0.7263 0.6607 0.4826 1.7885 0.6335 0.6081 0.4512 0.7520 0.5716 0.6298 0.6265 0.4439 0.6957 0.5097

SET [5] SNR 0.9179 0.9171 0.7473 1.0279 0.7533 0.7098 0.5386 0.5802 0.3784 0.8152 0.8027 0.6277 0.4884 0.3163

Ref. [30] SNR 0.4906 0.4763 0.3298 2.2670 0.5043 0.3433 0.2253 0.8393 0.6567 0.3570 0.3674 0.2500 0.8366 0.6290

NIQSV [26] SNR 0.6780 0.6216 0.4392 1.9123 0.5209 0.4546 0.3299 0.8296 0.6499 0.3765 0.3585 0.2340 0.8298 0.6244

Pre-DIBR
Ref. [33] SFR C+D 0.9064 0.9175 0.7481 1.0993 – – – – – – – – – –

CODIF SNR C+D 0.9352 0.9290 0.7783 0.9262 0.7851 0.7222 0.5649 0.5711 0.3434 0.8249 0.7950 0.6095 0.4709 0.3009

Fig. 7: Five color-depth image pairs with different distortions, the ground truth scores (MOS) and the objective scores predicted
by CODIF. Top row shows color images, and bottom row shows the associated depth images.

training, and the other 20% are used for test. To avoid bias,
we repeat the above process by 1,000 times and report the
median values. Table I lists the experimental results on MCL-
3D and IST databases, where we highlight the top two metrics
in boldface. In the table, ‘Post-DIBR’ indicates that the metric
uses DIBR-synthesized images in the quality evaluation, while
‘Pre-DIBR’ indicates that the metric uses the input color and
depth images to predict the quality of view synthesis. In ad-
dition, ‘GNR’ denotes the general-purpose no-reference IQA
metric, ‘SFR/SRR/SNR’ denotes the full-reference/reduced-
reference/no-reference view synthesis quality metric. ‘C+D’
indicates that the metric uses input color-depth image pair for
quality prediction. Kindly note that the metric in [33] needs
the undistorted color and depth images during the quality
evaluation, which are not provided in the IST database. So
these results are not available.

It is known from Table I that the CODIF metric delivers
the best performance in MCL-3D, in terms of both prediction
accuracy and monotonicity. The pre-DIBR metric [33] delivers
the second best prediction monotonicity, while the post-DIBR
metric SET [5] produces the second best prediction accuracy.
For VSRS on IST database, CODIF also delivers the best
performance. The SET metric [5] again performs the second

best in prediction accuracy. The general-purpose natural image
quality metric M3 [21] obtains the second best prediction
monotonicity. For VSIM on IST database, the proposed metric
delivers the best accuracy criterion as well as the second best
monotonicity criterion (only slightly worse than SET [5]).
From these results, it is evident that the proposed metric
achieves the best overall performance in predicting the quality
of synthesized views. In addition, as a pre-DIBR metric,
CODIF also outperforms the post-DIBR metrics.

To know the performance of the proposed metric more
intuitively, Fig. 7 shows five color/depth image pairs with
different scenes and distortions, as well as the ground truth
MOS values of the synthesized image and the predicted scores
by the proposed CODIF metric. From Figs. 7(a)-7(e), it is
clearly observed that, with their MOS values decreasing,
the predicted scores of our proposed metric also decrease
accordingly. Moreover, the predicted scores are very close to
the MOS values. These results further demonstrate that the
predicted scores are consistent with the human ratings.

C. Analysis of Statistical Significance

To estimate the statistical significance of the proposed met-
ric in contrast to the compared metrics, we perform a statistical
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TABLE II: Summary of statistical performances between the
proposed metric and state-of-the-art quality metrics. (a) VSRS
on MCL-3D Database, (b) VSRS on IST Database, and (c)
VSIM on IST Database

Metric
RMSE RMSE* PLCC

(a) (b) (c) (b) (c) (a) (b) (c)

NIQE [19] 1 1 1 1 1 1 0 0

BRISQUE [18] 1 0 1 0 1 1 0 0

IL-NIQE [20] 1 1 1 1 1 1 0 1

M3 [21] 1 0 1 1 1 1 0 0

MW-PSNR [23] 1 1 1 1 1 1 0 0

MP-PSNR [24] 1 1 1 1 1 1 0 0

LOGS [8] 1 1 1 1 1 1 0 0

SET [5] 1 0 0 0 0 0 0 0

Ref. [30] 1 1 1 1 1 1 0 1

NIQSV [26] 1 1 1 1 1 1 0 1

Ref. [33] 1 – – – – 0 – –

analysis using the F test [63], which is commonly used to
determine whether a metric performs statistically better/worse
than another one. In implementation, the F measure is first
computed using the RMSE values of a metric X and CODIF
as:

F =

(
RMSEX

RMSECODIF

)2

. (14)

Then, a threshold Fcritical is calculated based on the image
number in each database with confidence level 95%. If F >
Fcritical, CODIF performs significantly better than metric
X. If F < 1/Fcritical, CODIF performs significantly worse
than metric X. Otherwise, the two metrics have competitive
performance. In this work, the thresholds Fcritical for VSRS
on MCL-3D database,VSRS on IST database, and VSIM on
IST database are 1.1381, 1.5343 and 1.3519, respectively.
Similarly, we also calculate the F measure using RMSE*
values of a metric X and CODIF. Fig. 8 shows the bar
plots of the F-statistics of the compared metrics against the
proposed metric. The corresponding statistical analysis results
are listed in Table II. In the table, “1/0” indicates that the
proposed metric performs significantly better/competitive than
the compared metric.

It is observed from Fig. 8 that the F values of all compared
metrics are bigger than 1, indicating that CODIF predictions
are more accurate than the other metrics. From Table II,
we know that the proposed CODIF significantly outperforms
all the compared metrics in MCL-3D database. In the IST
database, only one of the ten compared metrics can obtain
statistically competitive performance with CODIF on both
VSRS and VSIM. These results also demonstrate that the
CODIF outperforms the existing metrics by a large margin.

Moreover, we conduct a statistical significance test for the
difference between PLCC values of the proposed CODIF and
the compared metrics, where more experimental details can
be found in ITU-T P.1401 [62]. The statistical analysis results

TABLE III: Performances of the proposed metric on six kinds
of distortions in MCL-3D.

Distortion PLCC SRCC KRCC RMSE

White noise 0.9618 0.9462 0.8248 0.6749

JPEG 0.9551 0.8806 0.7293 0.6355

JPEG2000 0.9811 0.9376 0.8161 0.4680

Gaussian blur 0.9810 0.9609 0.8572 0.5178

Downsampling blur 0.9822 0.9670 0.8739 0.5280

Transmission error 0.9029 0.8794 0.7295 0.8170

TABLE IV: Feature ablation study on MCL-3D database.

Feature PLCC SRCC KRCC RMSE

IRs-TMC 0.9059 0.8903 0.7166 1.1393

NRs-MSCN 0.8927 0.8877 0.7217 1.1632

Overall 0.9352 0.9290 0.7783 0.9262

are summarized in Table II. From the results, we can see that
the proposed CODIF achieves a very promising performance.
Besides, among the existing quality metrics, only SET [5] have
competitive statistical performance with the proposed metric
on both databases.

D. Performance on Different Distortions

The MCL-3D database contains six kinds of distortions for
color/depth images. To further investigate the performance of
the proposed CODIF metric on individual distortion types, we
further test it on the six distortions respectively. In Table III,
we summarize the corresponding experimental results.

From the results, it is easily observed that CODIF also
delivers very satisfactory results on individual distortion types.
Especially for JPEG2000, Gaussian blur and Downsampling
blur, the prediction accuracy values are all higher than 0.98.
These results demonstrate that CODIF can predict the view
synthesis quality when the color and/or depth images are
subject to diversified distortions, which is a property highly
needed in real applications.

E. Ablation study

In the proposed metric, two sets of features are extracted
from interactional regions and natural regions of the fused
color-depth image for building the quality prediction model.
To further know the relative importance of the two groups of
features, we further perform an ablation experiment based on
the MCL-3D database. Specifically, the IRs-TMC features and
NRs-MSCN features are separately fed into the SVR model
for training and test with the same setting as before. Table IV
summarizes the corresponding experimental results.

It is known from Table IV that the two groups of features
can both achieve very encouraging results when they are
used separately. Even a single group of feature is used,
the performances are better than most state-of-the-art post-
DIBR metrics. In addition, when the two sets of features
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Fig. 8: Plot of F scores of CODIF vs. the state-of-the-art metrics.

TABLE V: Performances of the proposed metric using differ-
ent regression models.

Regression Model PLCC SRCC KRCC RMSE

BP 0.9238 0.9146 0.7553 0.9325

RF 0.9109 0.9211 0.7697 0.9408

SVR (Proposed) 0.9352 0.9290 0.7783 0.9262

are combined to train the prediction model, the performance
further improves significantly. This also demonstrates the
necessity and reasonability of integrating the features from
both interactional regions and natural regions for building an
advanced view synthesis quality metric.

F. Evaluation of Quality Regression Model

In this part, we first compare the performance of the pro-
posed CODIF using SVR-based quality regression with those
of using the back propagation (BP) neural network [64] and
random forest (RF) regression model [5], where 80% image
pairs are adopted for model training, and 20% image pairs are
used for the test on MCL-3D database. In implementation, the
training-test process is repeated 1000 times, and the median
values are summarized in Table V. It can be seen that the
proposed CODIF using SVR achieves better performance than
the metric using BP or RF. Therefore, we leverage the SVR
to train the quality regression model in this work.

Further, we also investigate the performance of the proposed
metric when different percentages of image pairs are used
for model training. Table VI lists the experimental results on
MCL-3D database. From Table VI, it is clearly observed that
the proposed metric is not that sensitive to the various ratios
of training set. Even with 40% image pairs to train the model,
the performance of the proposed CODIF is still better than
the majority of the existing quality metrics, and PLCC value
exceeds 0.85. These results demonstrate that the proposed

TABLE VI: Performance of the proposed metric when differ-
ent percentages of image pairs are used for model training and
test.

Training-test PLCC SRCC KRCC RMSE

80%-20% 0.9352 0.9290 0.7783 0.9262

70%-30% 0.9162 0.9108 0.7535 1.0351

60%-40% 0.8965 0.8913 0.7271 1.1469

50%-50% 0.8762 0.8760 0.7025 1.2497

40%-60% 0.8579 0.8555 0.6775 1.3356

metric is not very dependent on the number of training image
pairs, which is crucial for real-world applications.

G. Generalization Ability

To investigate the generalization ability of the proposed
metric, we further conduct a cross-database test. Specifically,
we train the proposed metric on MCL-3D and IST databases,
and then we test the metric performance in a recently re-
leased view synthesis quality database IETR [65]. The IETR
database is intended for distortions solely introduced by DIBR
algorithms, so undistorted color/depth images are provided.
In other words, distortions in the synthesized images are
only caused by the imperfect DIBR operation. Table VII
summarizes the experiments results of the proposed CODIF
model and the existing post-DIBR quality models, which are
based on the VSRS synthesis method. It should be noted that
SET [5] is a learning-based model while others are learning-
free. For the learning-free models, we test their performance
on the IETR database directly.

It is seen from Table VII that CODIF achieves the top
two prediction monotonicity (SRCC and KRCC) when trained
on MCL-3D and IST databases. For the prediction accuracy
(PLCC), the proposed metric achieves the second best result
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TABLE VII: Generalization performances of view synthesis
quality models in IETR database. Experiments are conducted
for the VSRS synthesis method.

Model PLCC SRCC KRCC RMSE

MW-PSNR [23] 0.4361 0.2632 0.1789 0.1478

MP-PSNR [24] 0.4203 0.3729 0.2737 0.1490

LOGS [8] 0.7890 0.4633 0.3595 0.1039

Ref. [30] 0.3802 0.4256 0.3263 0.1519

NIQSV [26] 0.4594 0.5293 0.3789 0.1459

SET [5] (Training on MCL-3D) 0.3955 0.3910 0.2421 0.1509

SET [5] (Training on IST) 0.4655 0.3368 0.2316 0.1454

CODIF (Training on MCL-3D) 0.7260 0.6904 0.5033 0.1163

CODIF (Training on IST) 0.6044 0.5562 0.4248 0.1348

when trained on MCL-3D, which is slightly worse than LOGS
[8]. It is worth noting that LOGS [8] is specifically designed
for measuring the rendering distortions in DIBR, so it is not
surprising that it delivers the best prediction accuracy in IETR
database. However, LOGS does not perform very well under
diversified distortions, which can be seen from Table I. As
a pre-DIBR metric, CODIF outperforms most of the post-
DIBR metrics in terms of generalization ability, which further
confirms the advantages of the proposed metric. Moreover,
it can be observed that CODIF achieves better performance
when the quality model is trained on the MCL-3D database
than IST database. The main reason is that the images in the
IST database only contain compression distortion, while the
images in the MCL-3D database are generated by six different
kinds of distortions. On the other hand, the MCL-3D database
can provide more training images than IST database.

V. CONCLUSION

In DIBR-based virtual view synthesis, distortions in the
input color/depth signals lead to the degraded synthesized
view. Most of the current quality models operate on the synthe-
sized images, after performing the computationally expensive
DIBR process. To tackle the problem, we have presented a
NR quality prediction model for view synthesis using the
input color and depth images directly without performing the
DIBR process. Based on the proposed Wavelet-based color-
depth image fusion approach, the interactions between color
and depth images during the DIBR process can be simulated,
so that the quality of the synthesized image can be predicted
using the fused color-depth image. We have also proposed
to predict the overall quality from the interactional regions
and natural regions simultaneously. We have conducted ex-
tensive experiments and compared the performance of the
proposed metric with the state-of-the-arts. The results have
demonstrated that, in spite of a pre-DIBR quality prediction
metric, the proposed model even outperforms the current
post-DIBR quality models. As an application, the proposed
view synthesis quality prediction metric is expected to benefit
joint color/depth coding and bit allocation optimization for

improving view synthesis quality.
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